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Abstract: This talk concerns a long-standing problem on complete-

ness of function systems generated by odd periodic extensions of

functions in L2(0, 1). This problem, raised by Beurling and Wintner

in the 1940s, is closely related to the Riemann Hypothesis. We

completely solve the rational version of step functions(that is, for

those functions with rational jump discontinuities) by approaches

from analytic number theory, and present several deep applications

including a complete solution to the rational version of Kolzov com-

pleteness problem. This is a joint work with H.Dan.
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1. The Beurling-Wintner problem

The standard Lebesgue space L2(0, 1): Let {ϕ1, ϕ2, · · · , } be a se-
quence in L2(0, 1), the sequence is said to be complete if the linear
span of {ϕn(x)}n≥1 is dense in L2(0, 1).

For each ϕ in L2(0, 1), ϕ is considered as a function on the whole
real line by extending ϕ to an odd periodic function of period 2.
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The classical Beurling-Wintner problem raised by Beurling (1945)
and independently by Wintner (1944-1945) asked for which ϕ ∈

L2(0, 1), the dilation system {ϕ(kx) : k = 1, 2, · · · } is complete in
L2(0, 1), where ϕ is identified with its extension to an odd 2-periodic
function on R. This difficult problem is nowadays called as the
Beurling-Wintner Problem (by Nikolski).

The B-W problem: for which function ϕ ∈ L2(0, 1), the dilation sys-
tem {ϕ(x), ϕ(2x), · · · } is a complete sequence in L2(0, 1).

The prototype is ϕ(x) =
√

2 sin πx, sine {ϕ(kx) =
√

2 sin(kπx) :
k ∈ N} is a canonical orthonormal basis of L2(0, 1).
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The dilation system {ϕ(nx)}n≥1 is closely linked to various prob-
lems in mathematics. For examples,

• In analytic number theory, let ρ(x) = x − [x], then

1, ρ(x), ρ(2x), · · · , ρ(nx), · · ·

is complete in L2(0, 1). This sequence results from an appro-
priate form of an analytic version of the sieve of Eratosthenes.
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• Considering a nonlinear equation (for the one-dimensional p-
Laplacian):

d
dx

(
| f ′|p−2 f ′

)
+ λ| f |p−2 f = 0

where 1 < p < ∞, It has a remarkable solution, and all solu-
tions can be expressed in terms of dilations of this solution.



• The third is The Riemann hypothesis. The Riemann zeta func-
tion ζ(s) =

∑∞
n=1 n−s has convergence region Re(s) > 1.

Set η(s) =
∑∞

n=1(−1)nn−s, then η(s) is an entire function and

η(s) = 2(2−s − 2−1)ζ(s).

Therefore the Riemann zeta function ζ(s) can continue ana-
lytically in the complex plane except for a unique simple pole
z = 1.

The Riemann hypothesis, considered one of the greatest un-
solved problems in mathematics, asserts that any non-trivial
zero point s lies on Re(s) = 1/2.



We first mention Nikolski’s paper “In a shadow of the RH,...0in
Ann. Inst. Fourier, 2012. This is a significant paper on the dila-
tion completeness problem. This paper illustrated the relation
to the Riemann hypothesis (RH).

Indeed, the following statement about dilations of a nonperiodic
function is equivalent to RH. Set ϕ(x) = 1

x − [1
x], x > 0,

The NymanõõõBaez-Duarte criterion: The characteristic func-
tion χ[0,1] is in the closure in L2(0,∞) of the system{

ϕ(x), ϕ(2x), ϕ(3x), · · ·
}
.

In a communication with Nikolski, Nikolski asked me whether
ones can find a function ϕ ∈ L2[0, 1] such that completeness of
the dilation system{ϕ(x), ϕ(2x), ϕ(3x), · · ·

}
is equivalent to RH.



All these problems are all associated with completeness of the dila-
tion system {ϕ(nx)}n≥1 in L2(0, 1). This difficult problem is nowadays
called as the B-W Problem.

The study of the B-W problem can be dated back to P.Chebyshev
(1859), A.Markov (1898), next A.Wintner (1944), A.Beurling (1945),
N.Romanov (1944-1946), D.Bourgin (1946), N.Akhiezer (1940-1947),
V.Ya.Kozlov (1948-1950),,, H.Helson, N.Nikolski, K.seip, B.Mityagin,
H.Hedenmalm, P.Lindqvist, E. Saksman, S.Noor, ... (and possibly
others).

7



Two significant papers and two talks:

N. Nikolski, In a shadow of the RH: Cyclic vectors of Hardy spaces on the
Hilbert multidisc, Ann. Inst. Fourier, Grenoble, 62(2012), 1601-1625.

N. Nikolski, The current state of the dilation completeness problem, Cheby-
shev Lab, SPb, 2018. £Talk¤

H. Hedenmalm, P. Lindqvist and K. Seip, A Hilbert space of Dirichlet series
and systems of dilated functions in L2(0; 1), Duke Math. J. 86(1987), 1-37.

K. Seip, Hardy spaces of Dirichlet Series and the Riemann Zeta Function,

Valencia, October 20, 2017.£Talk¤

For a general ϕ, characterizing completeness of the dilation sys-
tem {ϕ(nx)}n≥1 is almost impossible. Therefore ones turn to some
special functions.

8



2. The Kozlov completeness problem

V. Kozlov (1914-2007), Published a series of brilliant papers on
the B-W problem in Doklady Akad. Nauk SSSR in 1948-1951.

Given a number 0 < s ≤ 1, and let χs be the characteristic
function of (0, s), and Ds = {χs(kx) : k = 1, 2, · · · } be the dilation
system defined by the characteristic function χs.
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Kozlov claimed some astonishing results in ”Doklady” papers
without proof. He claimed that

1) the dilated system Ds is complete for s = 1, 1
2,

2
3; and is incom-

plete for s in a neighborhood of 1
3;

2)Ds is incomplete for s = q
p, where p is an odd prime and q is odd

so that tan2 qπ
2p <

1
p.

The Kozlov problem is to decide for which s, the dilated system
Ds is complete in L2(0, 1).£1948-1950¤
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Kozlov’s proofs are not published until now. For quite a long
time, only the case r = 1 was reproved in 1965 by Ahiezer with a
long proof.

Until recently, Kozlov’s claims were reproved by Nikolski. The
proofs were exhibited in his talk in 2018. Indeed, for claim 2), he
proved a stronger version, where the condition tan2 qπ

2p < 1
p was

replaced by sin2 qπ
2p <

1
p+1. Moreover, he also proved when s = 1/4,

Ds is incomplete.
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For step functions with rational jump discontinuities, we com-
pletely solve the B-W problem by approaches from analytic number
theory, which results in a complete solution to the rational version
of the Kolzov problem. Moreover, since all such step functions form
a densely linear subspace of L2, this enables us to draw conclu-
sions for completeness of dilation systems of “almost all” functions
by approximation strategy. Before continuing we need to do a lot of
preparatory work.
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3. The BeurlingõWintner transformation

Suppose that ϕ ∈ L2 has its Fourier-sine expansion

ϕ(x) =
∞∑

n=1
an
√

2 sin nπx, 0 < x < 1.

Beurling and Wintner’s idea to associate ϕ to the Dirichlet series

Dϕ(s) :=
∞∑

n=1
ann−s.

This map, called the BeurlingõWintner transformation (by K.Seip)
satisfies

D
(
ϕ(nx)

)
= n−s · Dϕ. (♠)

That is, a dilations of ϕ is mapped to multiplication by Dirichlet
monomial. A Dirichlet polynomial is

∑N
n=1 cnn−s.
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The Hardy spaceH2of Dirichlet series consist of all Dirichlet series

f (s) =
∞∑

n=1
ann−s, and ‖ f ‖2 =

∑
n
|an|

2 < ∞.

Since by CauchyõSchwarz inequality, | f (s)|2 ≤ ‖ f ‖2
∑

n n−2σ,where
s = σ+it, a complex variable, any f ∈ H2 is analytic in C1/2. Where
for a real number σ,

Cσ = {z ∈ C : Re(z) > σ}.

For each Dirichlet series D, there exists a real number σa(D)
(called the abscissa of absolute convergence of D) such that if
σ > σa(D), the series D converges absolutely, but not if σ < σa(D).
Therefore for each D ∈ H2, we have σa(D) ≤ 1/2.

Notice that the BeurlingõWintner transformation D is a unitary
transformation from L2 onto H2, and D

(
ϕ(nx)

)
= n−s · Dϕ.
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A Dirichlet series D ∈ H2 is called a cyclic vector if the multiplier
invariant subspace generated by D is the whole space H2, that is,

span{n−sD(s) :, n = 1, 2, · · · } = H2.

ByD
(
ϕ(nx)

)
= n−s ·Dϕ, the Beurling-Wintner problem is equivalent

to the problem on cyclic vectors in H2, see paper by Hedenmalm,
Lindqvist and Seip.

Proposition 1. Let ϕ ∈ L2, the following statements are equivalent:

(1) the dilation system {ϕ(x), ϕ(2x), · · · } is complete in L2;

(2) Dϕ is cyclic in H2;
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The Beurling-Wintner transformation of step functions

Given a step function ϕ on (0, 1). Let Jϕ(x) (x ∈ R) denote the
jump of ϕ at x:

Jϕ(x) = ϕ(x+) − ϕ(x−) = lim
u→x+

ϕ(u) − lim
v→x−

ϕ(v),

where ϕ is identified with its odd 2-periodic extension on R.

Now given a step function ϕ with rational discontinuous points,
and let s1/t1, · · · , sl/tl be its all jump discontinuous points in (0, 1)
with gcd(si, ti) = 1, and let t be the least common multiple of t1, · · · , tl.
Then the step function ϕ can be represented as

ϕ =
1
2

Jϕ(0) χ(0,1) +
t−1∑
m=1

Jϕ(
m
t

)χ(m
t ,1).
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Set

f (n) = 2n
∫ 1

0
ϕ(x) sin nπxdx, n = 1, 2, · · · , and q = 2t

a direct calculation yields

f (n) = Jϕ(0) + Jϕ(1) cos nπ + 2
t−1∑
m=1

Jϕ(
m
t

) cos
mnπ

t

=

q∑
m=1

Jϕ(
m
t

)e2πimn/q, Gauss sum of the jump function Jϕ

f is periodic with period q, that is, f (n + q) = f (n), n = 1, 2, · · · .
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Sine {
√

2 sin(nπx) : n ∈ N} is a canonical orthonormal basis of L2,

ϕ = 2
∞∑

n=1

[ ∫ 1

0
ϕ(x) sin(nπx)dx

]
sin(nπx)

and hence

Dϕ(s) =

√
2

2

∑
n

f (n)
ns+1 =

√
2

2
D f (s + 1),

where D f (s) is defined by

D f (s) :=
∞∑

n=1

f (n)
ns .

Therefore, Dϕ is a translation of D f . Notice that the above arith-
metical function f is periodic with period q. Hence in light of Propo-
sition 1, we should first establish a criterion for the cyclicity on trans-
lations of Dirichlet series with periodic coefficients. A natural entry
point is Dirichlet L-functions.
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4. A brief introduction for Dirichlet characters, Dirichlet
L-functions and Prime number theorem

A Dirichlet character mod q is an arithmetical function χ satisfying

1) χ is completely multiplicative, that is, for any m, n ∈ Z,

χ(mn) = χ(m)χ(n);

2) χ is periodic with the period q(where q is the least period), that
is, χ(n + q) = χ(n), n ∈ Z.

It is easy to verify that if χ is not zero character, then
if gcd(n, q) > 1, then χ(n) = 0; if gcd(n, q) = 1, then χ(n) , 0.

There are exactly φ(q) distinct Dirichlet characters mod q, where
φ(q) is Euler’s totient function– it is the number of integers k in the
range 1 ≤ k ≤ q, gcd(q, k) = 1.
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If χ is a Dirichlet character, one defines its Dirichlet L-function by

L(s, χ) =
∞∑

n=1

χ(n)
ns

where s is complex variable with Re(s) > 1. By analytic continuation,
this function can be extended to a meromorphic function on the
whole complex plane. Dirichlet L-functions are generalizations of
the Riemann zeta-function. The case χ(n) = 1 for all n yields the
Riemann zeta function

ζ(s) = 1 +
1
2s +

1
3s + · · · .

Notice that L-function of χ can be written as an Euler product:

L(s, χ) =
∏

p

(
1 − χ(p)p−s

)−1
for Re(s) > 1,

where p run over all prime numbers. Therefore each Dirichlet L-
function has no zero point in Re(s) > 1.
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The generalized Riemann hypothesis asserts that for every Dirich-
let L-function, any zero point s with Re(s) > 0 lies on Re(s) = 1/2.

Dirichlet L-functions introduced by Dirichlet play a fundamental
role in the distribution of primes in an arithmetic progression. Dirich-
let’s theorem states that for any pair a, q of relatively prime positive
integers, the arithmetic progression a, a + q, a + 2q, · · · contains
infinitely many primes.

The following two theorems on prime numbers are well known,
for which they can be found in some books on Number Theory.

Dirichlet’s theorem: For relatively prime positive integers a, q,∑
p≡a (mod q)

p prime

1
p
= ∞.
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Prime number theorem for arithmetic progressions: Assume
gcd(q, a) = 1, and let π(x; q, a) be the number of prime numbers
p ≡ a (mod q) which do not exceed x. Then

π(x; q, a) ∼
x

φ(q) log x
, x→ ∞.

Let χ be a Dirichlet character mod q. A divisor d of q is called
an induced modulus for χ if χ(a) = 1 for any positive integer a,
gcd(a, q) = 1 and a ≡ 1 (mod d). The Dirichlet character χ is said to
be primitive if it has no induced modulus less than q.

Every Dirichlet character χ can be uniquely decomposed as a
product of a primitive Dirichlet character and the principle Dirichlet
character mod q, where the principle Dirichlet character χ0 mod q
is defined to be χ0(n) = 1 if gcd(n, q) = 1; χ0(n) = 0 if gcd(n, q) > 1.
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5. The cyclicity of translations of Dirichlet series with
periodic coefficients

As discussed above the B-W transformation maps step func-
tions to translations of Dirichlet series with periodic coefficients,
and notice that “cyclicity of translations”⇔ “completeness of dila-
tion systems”.

For an arithmetical function f , D f denotes the Dirichlet series

D f (s) =
∞∑

n=1

f (n)
ns .

If f is bounded, then σa(D f ) ≤ 1 and the translations of D f ,
D f (s + 1) ∈ H2, and it is analytic in C0,

We have the following complete characterization of the cyclicity
of Dirichlet series D f (s + 1) in H2 when f is periodic.
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Main Theorem [Dan-G] Let q be a positive integer, and f is periodic with period
q. Then the following statements are equivalent:

(1) D f (s + 1) is cyclic in H2;

(2) D f has no zeros in C1 and f (1) , 0;

(3) D f has a unique decomposition

D f (s) = P(s)L(s, ψ)

for some Dirichlet polynomial P without zeros in C1 and P having a nonzero
constant term, and some primitive Dirichlet character ψ.

In this case, the modulus q0 of ψ in (3) divides q, and the Dirichlet polynomial P
in (3) has form

P(s) =
∑
d| q

q0

( f ∗ µψ)(d)
ds .

25



The proof of this theorem relies on a technical lemma on zeros
of linear combinations of Dirichlet L-functions.

Lemma [Dan-G]. For a natural number q, then a linear combination
of Dirichlet L-functions,

∑
χmod q cχL(s, χ) (cχ ∈ C) has a nonzero

constant term and no zeros in C1 if and only if the set {χ : cχ , 0}
is a singleton.

The proof of this lemma is considerably technical and long, for
which it needs harmonic analysis in infinitely many variables, har-
monic analysis on groups and Prime number theorem for arithmetic
progressions, and a covering lemma, etc.
Covering Lemma [Dan-G]. Let {rn}n∈N be a sequence of positive number with
all rn < 1. If

∑∞
n=1 rn = ∞, then

∞⋃
m=1

 m∏
n=1

zn : zn ∈ B(1, rn)

 = C \ {0}.
where B(a, r) denote the disk {z ∈ C : |z − a| < r}.
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6. The B-W problem for step functions

Let Sr denote the class of step functions on (0, 1) with rational jump
discontinuities, then Sr is a densely linear subspace of L2. Set

C =
{
ϕ ∈ L2 : the dilation system {ϕ(x), ϕ(2x), · · · } is complete in L2}

Now for ϕ ∈ Sr, then Dϕ(s) = D f (s + 1) for some periodic arith-
metical function f . Applying Main Theorem (2) we have

Theorem 1 [Dan-G] If ϕ ∈ Sr, then ϕ ∈ C if and only if Dϕ has a
nonzero constant term and no zeros in C0.
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Example 1. Considering χ(0,r)(s), since Dχ(0,r)(s) =
∑∞

n=1
1−cos nrπ

ns+1 (r ∈ [0, 1]), a
direct calculation yields

Dχ(0,1)(s) = 2
√

2L(s + 1, χ2), Dχ(0, 1
2 )(s) =

√
2(1 + 2−s)L(s + 1, χ2),

Dχ(0, 1
3 )(s) =

√
2

2
(1 + 2−s + 3−s − 6−s)ζ(s + 1), Dχ(0, 2

3 )(s) =
3
√

2
2

L(s + 1, χ3),

where χ2, χ3 are principle Dirichelt character mod 2 and 3, respectively. Then we
further have

Dχ( 1
2 ,1)(s) =

√
2(1 − 2−s)L(s + 1, χ2),

Dχ( 1
3 ,

2
3 )(s) =

√
2(1 − 3−s)L(s + 1, χ2),

Dχ( 1
3 ,1)(s) =

3
√

2
2

(1 − 2−s)L(s + 1, χ3).

Therefore when I is one of the next 6 intervals, (0, 1), (0, 1
2), (1

2, 1), (0, 2
3), (1

3, 1), (1
3,

2
3),

the Dirichlet series DχI has a nonzero constant terms and no zeros in C0, this
shows χI ∈ C for all these I.

28



Example 2. Suppose that p ≥ 7 is a prime, k ≥ 1 and V is a proper,
non-degenerated open subset of (0, 1). If every boundary point of
V has form s

pk for some integer s, then χV ∈ C if and only if

V = (
1
pl
,

2
pl

) ∪ (
3
pl
,

4
pl

) ∪ · · · ∪ (
pl − 2

pl
,

pl − 1
pl

)

or

V = (0,
1
pl

) ∪ (
2
pl
,

3
pl

) ∪ · · · ∪ (
pl − 1

pl
, 1)

for some 1 ≤ l ≤ k.

However, this Example fails for p = 2, 3, 5.
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Let ϕ ∈ Sr, let s1/t1, · · · , sl/tl be its all jump discontinuous points
in (0, 1) with gcd(si, ti) = 1 for i = 1, · · · , l, and let t be the least
common multiple of t1, · · · , tl. We apply Main Theorem (3) toDϕ(s):

Theorem 2 [Dan-G] For the above ϕ in Sr, set q = 2t and g(m) =
Jϕ(m

t ) (m ≥ 1). Then ϕ ∈ C if and only if there exists a unique
primitive Dirichlet character ψ mod q0 with q0 | q that satisfies:

(1) g(m) = g(m̂)ψ(m
m̂) for each m ≥ 1, where m̂ = gcd(m, q);

(2) the Dirichlet polynomial
∑

d| qq0
(g ∗ µψ)( q

dq0
)d−s has a nonzero

constant term and no zeros in C0.
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According to Theorem 2 we can construct a lots of step functions belonging
to C. Let d(n) (n ≥ 1) denote the number of divisors of n.

Example 3. Let ψ be a primitive Dirichlet character mod q with q > 1 and ψ(−1) =
1. For each n ≥ 1 put

S n =

[ nq−1
2 ]∑

m=1
gcd(m,n)=1

ψ(m)χ( 2m
nq ,1).

(1) Suppose that v is a product of some distinct primes and gcd(v, q) = 1. Then
we have S v ∈ C.

(2) Suppose that u is a positive even integer, and {cr : r | u} are complex
numbers satisfying that

|c1| > [d(uu′) − 1] ·max{|cr| : r | u, r > 1},

where u′ is the largest divisor of u relatively prime to q. Then we have∑
r|u crS r ∈ C.
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Example 4. Set ψ(n) = (n | 5), the Legendre symbol mod 5. Then
Example 3 (1) gives

S 2 = χ(1
5,

3
5) ∈ C,

S 3 = χ( 2
15,

4
15) + χ( 8

15,
14
15) ∈ C,

S 6 = χ( 1
15,

7
15) + χ(11

15,
13
15) ∈ C.

Moreover, by letting u = 2 in Example 3 (2), we conclude that

c1S 1 + c2S 2 = c1χ(2
5,

4
5) + c2χ(1

5,
3
5) ∈ C

for c1, c2 ∈ C with |c1| > 2|c2|. In particular, S 1 = χ(2
5,

4
5) ∈ C.
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7. Jumps and discontinuities for step functions in C

Applying the above Theorem 2 to a step function ϕ ∈ C with
rational jump discontinuities, we have

Jϕ(
m
n

) =

Jϕ(1
n), m odd;

Jϕ(2
n)ψ(m

2 ), m even

If Jϕ(m
n ) , 0, then q0|2n if n is even¶q0|n if n is odd.

The above statement shows that jumps and discontinuities for
step functions in C ∩ Sr follow certain rule.
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Theorem 3 [Dan-G]. If ϕ ∈ Sr ∩ C, then the set of all jump discon-
tinuities of ϕ in (0, 1) is⊔

n≥3
Jϕ(2

n),0

{2m
n

: 1 ≤ m <
n
2
, gcd(m, n) = 1

}
,

and ∑
n≥3

Jϕ(2
n),0

φ(n) = 2N,

where N is the number of jump discontinuities of ϕ in (0, 1).
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Set

t(n) =
∏

p≤2n+1
p prime

p[logp 3n], n = 1, 2, · · · .

Corollary 2 [Dan-G]. If ϕ ∈ Sr ∩ C has N (N ∈ N) jump disconti-
nuities in (0, 1), then every jump discontinuity of ϕ has form s

t(N) for
some integer s.

Therefore, functions in Sr ∩ C satisfy very strong constraints.
This results in that the set Sr ∩ C is very “small0 in some sense.
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8. The B-W problem for characteristic functions

We apply the preceding results to characteristic functions on
open subsets of (0, 1).

Theorem 4 [Dan-G]. For each natural number n, writing Fn to be
the set of all non-degenerated open subsets V of (0, 1) with ratio-
nal boundary points, which have at most n connected components.
Then the set

Sn =
{
V : V ∈ Fn, and χV ∈ C

}
is a finite set. A set V is non-degenerated if (0, 1) \ V has not

isolated points.
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The case n = 1 is especially important, and in this case we can
find out all open subintervals in S1.

Theorem 5 [Dan-G]. Let 0 ≤ α < β ≤ 1 be two rational numbers
and put I = (α, β). Then χI ∈ C if and only if I is one of the next
10 intervals

(0, 1), (0,
1
2

), (
1
2
, 1), (0,

2
3

), (
1
3
,
2
3

), (
1
3
, 1), (

1
4
,
3
4

), (
1
5
,
3
5

), (
2
5
,
4
5

), (
1
6
,
5
6

).

In particular, we have solved the rational version of the Kolzov
completeness problem in 1950s:

Suppose that r ∈ (0, 1] is rational. Then χ(0,r) ∈ C if and only if
r = 1, 1

2,
2
3.

37



Recall that the Kozlov completeness problem is to characterize
the set

K := {t ∈ (0, 1] : χ(0,t) ∈ C}.

Applying the above Theorem we conclude that for any rational num-
ber r ∈ (0, 1) other than 1

2,
2
3, 1, there exists a positive number

ε = ε(r), such that χ(0,t) < C for each t ∈ (0, 1) with |t − r| < ε(r).
Therefore,K is nowhere dense in (0, 1], and it is reasonable to con-
jecture thatK is “small” in (0, 1]. We record the following interesting
question.

Question. Is K of zero Lebesgue measure? Is K a countable set?
Is K a finite set? Or, are 1, 1

2,
2
3 the only elements in K?
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9. The B-W problem for real step functions

Theorem 6 [Dan-G]. Suppose ϕ ∈ Sr ∩ C is real-valued.

(1) If ϕ(0+) > 0, then for any N (N ∈ N) distinct primes p1, · · · , pN,

2ϕ(0+) >
∑

1≤i≤N
Jϕ(

2
pi

)−
∑

1≤i< j≤N
Jϕ(

2
pip j

)+· · ·+(−1)N+1Jϕ(
2∏N

i=1 pi
).

(2) If ϕ(0+) = 0, then either Jϕ(2
p) ≥ 0 for any prime p or Jϕ(2

p) ≤ 0
for any prime p.

(3) Let p be a prime with p ≡ 3 (mod 4) and k a positive integer.
Then Jϕ( m

pk) = Jϕ( n
pk) for any 1 ≤ m, n ≤ pk − 1 satisfying that

p - mn and m − n is even.
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Notice that when ϕ(0+) < 0, then “>” in the conclusion of the
above Theorem is replaced by “<”.

We take N = 1 and p1 = 2 in the above Theorem, then

If ϕ ∈ Sr is real-valued and ϕ(1−)
ϕ(0+) ≤ −1 (ϕ(0+) , 0), then ϕ < C.

For example, taking ϕ = χ(0,1/2) − aχ(1/2,1), a ≥ 1, then the
dilation system {ϕ(x), ϕ(2x), · · · } of ϕ is incomplete in L2.
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To all interested readers, Please see our paper attached in Arxiv,
The solutions to the Wintner-Beurling problem in the class of step
functions, http://arxiv.org/abs/2005.09779v2.

Thank you for your attention!
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