## Sharp inequalities on BMO-space and Bellman function

Vasily Vasyunin

St. Petersburg department of the Steklov Mathematical Institute

April 8, 2021

## Colloquium

Departement of Mathematics and Computer Science
St.-Petersburg State University

## Notation

$$
\langle\varphi\rangle_{I}=\frac{1}{|| |} \int_{I} \varphi(t) d t
$$

is the average of $\varphi$ over $l$.

## Notation

$$
\langle\varphi\rangle_{I}=\frac{1}{|| |} \int_{I} \varphi(t) d t
$$

is the average of $\varphi$ over $l$.

Definition: $\varphi \in \mathrm{BMO}(J)$ means

$$
\sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t<\infty
$$

## Notation

$$
\langle\varphi\rangle_{I}=\frac{1}{|| |} \int_{I} \varphi(t) d t
$$

is the average of $\varphi$ over $l$.

Definition: $\varphi \in \mathrm{BMO}(J)$ means

$$
\begin{gathered}
\sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t<\infty, \\
\|\varphi\|_{\mathrm{BMO}(J)}^{2}=\sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t
\end{gathered}
$$

## Notation

$$
\langle\varphi\rangle_{I}=\frac{1}{|| |} \int_{I} \varphi(t) d t
$$

is the average of $\varphi$ over $l$.

Definition: $\varphi \in \mathrm{BMO}(J)$ means

$$
\begin{aligned}
& \sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t<\infty, \\
& \begin{aligned}
\|\varphi\|_{\mathrm{BMO}(J)}^{2} & =\sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t \\
& =\sup _{I \subset J}\left(\left\langle\varphi^{2}\right\rangle_{I}-\langle\varphi\rangle_{I}^{2}\right),
\end{aligned}
\end{aligned}
$$

## Notation

$$
\langle\varphi\rangle_{I}=\frac{1}{|| |} \int_{I} \varphi(t) d t
$$

is the average of $\varphi$ over $l$.

Definition: $\varphi \in \mathrm{BMO}(J)$ means

$$
\begin{aligned}
& \sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t<\infty, \\
& \begin{aligned}
\|\varphi\|_{\mathrm{BMO}(J)}^{2} & =\sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{2} d t \\
& =\sup _{I \subset J}\left(\left\langle\varphi^{2}\right\rangle_{I}-\langle\varphi\rangle_{I}^{2}\right), \\
\mathrm{BMO}_{\varepsilon} & \stackrel{\text { def }}{=}\{\varphi \in \mathrm{BMO}:\|\varphi\| \leq \varepsilon\} .
\end{aligned}
\end{aligned}
$$

## Extremal problems and their Bellman functions

## Extremal problem.

For a given real-valued function $f$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}$.

## Extremal problems and their Bellman functions

## Extremal problem.

For a given real-valued function $f$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}$.
Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\} .
$$

## Extremal problems and their Bellman functions

## Extremal problem.

For a given real-valued function $f$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}$.
Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\} .
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1},
$$

## Extremal problems and their Bellman functions

## Extremal problem.

For a given real-valued function $f$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}$.
Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\} .
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1}, \quad\left\langle\varphi^{2}\right\rangle_{J}=x_{2},
$$

## Extremal problems and their Bellman functions

## Extremal problem.

For a given real-valued function $f$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}$.
Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\} .
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1}, \quad\left\langle\varphi^{2}\right\rangle_{J}=x_{2}, \quad\|\varphi\| \leq \varepsilon
$$

## Properties of the Bellman function

(1) The Bellman function does not depend of the interval $J$, where test functions $\varphi$ are defined.

## Properties of the Bellman function

(1) The Bellman function does not depend of the interval $J$, where test functions $\varphi$ are defined.
(2) Domain of B :

$$
\Omega_{\varepsilon}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}\right\} .
$$

## Properties of the Bellman function

(1) The Bellman function does not depend of the interval $J$, where test functions $\varphi$ are defined.
(2) Domain of B :

$$
\Omega_{\varepsilon}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}\right\} .
$$

(3) Boundary values:

$$
\mathbf{B}\left(x_{1}, x_{1}^{2}\right)=f\left(x_{1}\right) .
$$

## Various choices of $f$

- Integral form of the John-Nirenberg inequality:

$$
f(s)=e^{s}, \quad \mathbf{B}(x ; \varepsilon)=\sup _{\varphi}\left\{\left\langle e^{\varphi}\right\rangle_{J}\right\} .
$$

## Various choices of $f$

- Integral form of the John-Nirenberg inequality:

$$
f(s)=e^{s}, \quad \mathbf{B}(x ; \varepsilon)=\sup _{\varphi}\left\{\left\langle e^{\varphi}\right\rangle_{J}\right\} .
$$

- Classical weak form of the John-Nirenberg inequality:

$$
\begin{gathered}
f(s)=\chi_{(-\infty,-\lambda) \cup(\lambda, \infty)}(s) \\
\mathbf{B}(x ; \varepsilon, \lambda)=\sup _{\varphi}\left\{\frac{1}{|J|}|\{t \in J:|\varphi(t)| \geq \lambda\}|\right\} .
\end{gathered}
$$

## Various choices of $f$

- Integral form of the John-Nirenberg inequality:

$$
f(s)=e^{s}, \quad \mathbf{B}(x ; \varepsilon)=\sup _{\varphi}\left\{\left\langle e^{\varphi}\right\rangle_{J}\right\}
$$

- Classical weak form of the John-Nirenberg inequality:

$$
\begin{gathered}
f(s)=\chi_{(-\infty,-\lambda) \cup(\lambda, \infty)}(s), \\
\mathbf{B}(x ; \varepsilon, \lambda)=\sup _{\varphi}\left\{\frac{1}{|J|}|\{t \in J:|\varphi(t)| \geq \lambda\}|\right\} .
\end{gathered}
$$

- $L^{p}$-estimates, in particular, equivalence of different BMO-norms:

$$
\left.f(s)=|s|^{p}, \quad \mathbf{B}(x ; p, \varepsilon)=\sup _{\varphi}\left\{\left.\langle | \varphi\right|^{p}\right\rangle_{J}\right\}
$$

## Concavity

$$
\frac{d^{2} \mathbf{B}}{d x^{2}}=\left(\begin{array}{cc}
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}
\end{array}\right) \leq 0
$$

## Concavity

$$
\frac{d^{2} \mathbf{B}}{d x^{2}}=\left(\begin{array}{cc}
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{\mathbf{B}}}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}
\end{array}\right) \leq 0 .
$$

Concavity has to be degenerate along some direction.

## Concavity

$$
\frac{d^{2} \mathbf{B}}{d x^{2}}=\left(\begin{array}{cc}
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} B}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}
\end{array}\right) \leq 0 .
$$

Concavity has to be degenerate along some direction.
The Hessian matrix $\frac{d^{2} B}{d x^{2}}$ has to be degenerate.

## Concavity

$$
\frac{d^{2} \mathbf{B}}{d x^{2}}=\left(\begin{array}{cc}
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} B}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}
\end{array}\right) \leq 0 .
$$

Concavity has to be degenerate along some direction.
The Hessian matrix $\frac{d^{2} B}{d x^{2}}$ has to be degenerate.
Monge-Ampère equation

$$
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} \cdot \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}=\left(\frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}}\right)^{2} .
$$

## Concavity

$$
\frac{d^{2} \mathbf{B}}{d x^{2}}=\left(\begin{array}{cc}
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}
\end{array}\right) \leq 0 .
$$

Concavity has to be degenerate along some direction.
The Hessian matrix $\frac{d^{2} B}{d x^{2}}$ has to be degenerate.
Monge-Ampère equation

$$
\frac{\partial^{2} \mathbf{B}}{\partial x_{1}^{2}} \cdot \frac{\partial^{2} \mathbf{B}}{\partial x_{2}^{2}}=\left(\frac{\partial^{2} \mathbf{B}}{\partial x_{1} \partial x_{2}}\right)^{2}
$$

The Bellman function is a solution of the boundary value problems for this equation:

$$
\mathbf{B}\left(x_{1}, x_{1}^{2}\right)=f\left(x_{1}\right) .
$$

## Properties of the solutions

Properties of the solutions of the Monge-Ampère equation

## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.


## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.


## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.


## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.


## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.


## Properties of the Monge-Ampère foliation

- If two extremal lines intersect at a point, then $\mathbf{B}$ is linear


## Properties of the solutions

## Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.


## Properties of the Monge-Ampère foliation

- If two extremal lines intersect at a point, then $\mathbf{B}$ is linear
- If an extremal line intersects the upper boundary $\left\{x: x_{2}=x_{1}^{2}+\varepsilon^{2}\right\}$, then it touches it tangentially.


## The left tangent foliation



## The right tangent foliation



## An examples for the left foliation

The function $f(s)=e^{s}$ produces the left foliation.

## An examples for the left foliation

The function $f(s)=e^{s}$ produces the left foliation.
The corresponding Bellman function is

$$
\mathbf{B}(x)=\frac{1-\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}}{1-\varepsilon} \exp \left\{x_{1}+\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}-\varepsilon\right\} .
$$

## An examples for the left foliation

The function $f(s)=e^{s}$ produces the left foliation.
The corresponding Bellman function is

$$
\mathbf{B}(x)=\frac{1-\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}}{1-\varepsilon} \exp \left\{x_{1}+\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}-\varepsilon\right\}
$$

It gives the sharp constants in the integral form of the John-Nirenberg inequality:

## Theorem

If $\|f\|<1$, then

$$
\left\langle e^{f}\right\rangle_{J} \leq \frac{e^{-\|f\|}}{1-\|f\|} e^{\langle f\rangle_{J}}
$$

The constants are sharp.

## An examples for the right foliation

The function $f(s)=-e^{s}$ produces the right foliation.

## An examples for the right foliation

The function $f(s)=-e^{s}$ produces the right foliation.
This is equivalent to consideration of the same function $f(s)=e^{s}$, but looking for the infimum, rather than supremum.

## An examples for the right foliation

The function $f(s)=-e^{s}$ produces the right foliation.
This is equivalent to consideration of the same function $f(s)=e^{s}$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$
\mathbf{B}(x)=\frac{1+\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}}{1+\varepsilon} \exp \left\{x_{1}-\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}+\varepsilon\right\} .
$$

## An examples for the right foliation

The function $f(s)=-e^{s}$ produces the right foliation.
This is equivalent to consideration of the same function $f(s)=e^{s}$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$
\mathbf{B}(x)=\frac{1+\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}}{1+\varepsilon} \exp \left\{x_{1}-\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}+\varepsilon\right\}
$$

Any smooth function $f$ with $f^{\prime \prime \prime}>0$ produces the left foliation.

## An examples for the right foliation

The function $f(s)=-e^{s}$ produces the right foliation.
This is equivalent to consideration of the same function $f(s)=e^{s}$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$
\mathbf{B}(x)=\frac{1+\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}}{1+\varepsilon} \exp \left\{x_{1}-\sqrt{\varepsilon^{2}-x_{2}+x_{1}^{2}}+\varepsilon\right\} .
$$

Any smooth function $f$ with $f^{\prime \prime \prime}>0$ produces the left foliation.
Any smooth function $f$ with $f^{\prime \prime \prime}<0$ produces the right foliation.

## A cup



## An example



Figure: A cup gluing left and right tangent foliations.
Example: $f(s)=|s|^{p}, 1 \leq p<2$.

## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



## Gluing left and right foliations in the reverse order



Figure: A triangle gluing right and left tangent foliations.

## An example of gluing by a triangle



Figure: A triangle gluing left and right tangent foliations.
Example: $f(s)=|s|^{p}, p>2$.

## A more difficult example of foliation



Figure: The Monge-Ampère foliation for $f(s)=|s|^{p}, 0<p<1$.

## A cup: singular foliations



## An example



Figure: The Monge-Ampère foliation for $f(s)=-|s|^{p}, 0<p<1$.

## Equivalence of different BMO-norms

## Theorem

## Equivalence of different BMO-norms

## Theorem

- If $0<p \leq 1$, then

$$
2^{1-2 / p}\|\varphi\|_{\operatorname{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)},
$$

## Equivalence of different BMO-norms

## Theorem

- If $0<p \leq 1$, then

$$
2^{1-2 / p}\|\varphi\|_{\operatorname{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)},
$$

- If $1 \leq p \leq 2$, then

$$
\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)}
$$

## Equivalence of different BMO-norms

## Theorem

- If $0<p \leq 1$, then

$$
2^{1-2 / p}\|\varphi\|_{\operatorname{BMO}(J)} \leq\|\varphi\|_{\operatorname{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)},
$$

- If $1 \leq p \leq 2$, then

$$
\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)}
$$

- If $2 \leq p<\infty$, then

$$
\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{\rho}(J)} \leq\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)}
$$

## Equivalence of different BMO-norms

## Theorem

- If $0<p \leq 1$, then

$$
2^{1-2 / p}\|\varphi\|_{\operatorname{BMO}(J)} \leq\|\varphi\|_{\operatorname{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)},
$$

- If $1 \leq p \leq 2$, then

$$
\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)}
$$

- If $2 \leq p<\infty$, then

$$
\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{\rho}(J)} \leq\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)}
$$

## Equivalence of different BMO-norms

## Theorem

- If $0<p \leq 1$, then

$$
2^{1-2 / p}\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)},
$$

- If $1 \leq p \leq 2$, then

$$
\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{p}(J)} \leq\|\varphi\|_{\mathrm{BMO}(J)}
$$

- If $2 \leq p<\infty$, then

$$
\|\varphi\|_{\mathrm{BMO}(J)} \leq\|\varphi\|_{\mathrm{BMO}^{\rho}(J)} \leq\left(\frac{p}{2} \Gamma(p)\right)^{1 / p}\|\varphi\|_{\mathrm{BMO}(J)}
$$

$$
\|\varphi\|_{\mathrm{BMO}^{p}(J)}^{p} \stackrel{\text { def }}{=} \sup _{I \subset J} \frac{1}{|I|} \int_{I}\left|\varphi(t)-\langle\varphi\rangle_{I}\right|^{p} d t
$$

## A bit more difficult situation

## A bit more difficult situation



Figure: $f(s)=1$ for $|s|>\lambda$ and $f(s)=0$ for $|s|<\lambda$

## Explicit Bellman function: the classical form

Theorem
The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

## Explicit Bellman function: the classical form

## Theorem

The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

- if $x \in \Omega_{1}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1$;


## Explicit Bellman function: the classical form

## Theorem

The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

- if $x \in \Omega_{1}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1$;
- if $x \in \Omega_{2}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1-\frac{x_{2}-2(\lambda+\varepsilon)\left|x_{1}\right|+\lambda^{2}+2 \varepsilon \lambda}{8 \varepsilon^{2}}$;


## Explicit Bellman function: the classical form

## Theorem

The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

- if $x \in \Omega_{1}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1$;
- if $x \in \Omega_{2}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1-\frac{x_{2}-2(\lambda+\varepsilon)\left|x_{1}\right|+\lambda^{2}+2 \varepsilon \lambda}{8 \varepsilon^{2}}$;
- if $x \in \Omega_{3}$, then

$$
\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{x_{2}-x_{1}^{2}}{x_{2}+\lambda^{2}-2 \lambda\left|x_{1}\right|} ;
$$

## Explicit Bellman function: the classical form

## Theorem

The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

- if $x \in \Omega_{1}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1$;
- if $x \in \Omega_{2}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1-\frac{x_{2}-2(\lambda+\varepsilon)\left|x_{1}\right|+\lambda^{2}+2 \varepsilon \lambda}{8 \varepsilon^{2}}$;
- if $x \in \Omega_{3}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{x_{2}-x_{1}^{2}}{x_{2}+\lambda^{2}-2 \lambda\left|x_{1}\right|}$;
- if $x \in \Omega_{4}$, then

$$
\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{e}{2}\left(1-\sqrt{1-\frac{x_{2}-x_{1}^{2}}{\varepsilon^{2}}}\right) \exp \left\{\frac{\left|x_{1}\right|-\lambda}{\varepsilon}+\sqrt{1-\frac{x_{2}-x_{1}^{2}}{\varepsilon^{2}}}\right\} ;
$$

## Explicit Bellman function: the classical form

## Theorem

The function $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)$ has different expressions in different subdomains of $\Omega_{\varepsilon}$ :

- if $x \in \Omega_{1}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1$;
- if $x \in \Omega_{2}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=1-\frac{x_{2}-2(\lambda+\varepsilon)\left|x_{1}\right|+\lambda^{2}+2 \varepsilon \lambda}{8 \varepsilon^{2}}$;
- if $x \in \Omega_{3}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{x_{2}-x_{1}^{2}}{x_{2}+\lambda^{2}-2 \lambda\left|x_{1}\right|}$;
- if $x \in \Omega_{4}$, then

$$
\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{e}{2}\left(1-\sqrt{1-\frac{x_{2}-x_{1}^{2}}{\varepsilon^{2}}}\right) \exp \left\{\frac{\left|x_{1}\right|-\lambda}{\varepsilon}+\sqrt{1-\frac{x_{2}-x_{1}^{2}}{\varepsilon^{2}}}\right\} ;
$$

- if $x \in \Omega_{5}$, then $\mathbf{B}\left(x_{1}, x_{2} ; \lambda, \varepsilon\right)=\frac{x_{2}}{4 \varepsilon^{2}} \exp \left\{2-\frac{\lambda}{\varepsilon}\right\}$.


## Classical form of the John-Nirenberg inequality

## Theorem

$$
\left|\left\{t \in J:\left|f(t)-\langle f\rangle_{J}\right| \geq \lambda\right\}\right| \leq \frac{e^{2}}{4} \exp \left\{-\frac{\lambda}{\|f\|}\right\}|J| .
$$

for all functions $f \in \operatorname{BMO}(J)$. All constants are sharp.

## Extremal problem for two functionals

For two given real-valued function $f$ and $g$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi)\rangle_{J}$ to be fixed.

## Extremal problem for two functionals

For two given real-valued function $f$ and $g$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi)\rangle_{J}$ to be fixed.

Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2}, x_{3} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\}
$$

## Extremal problem for two functionals

For two given real-valued function $f$ and $g$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi)\rangle_{J}$ to be fixed.

Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2}, x_{3} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\}
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1}, \quad\left\langle\varphi^{2}\right\rangle_{J}=x_{2}
$$

## Extremal problem for two functionals

For two given real-valued function $f$ and $g$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi)\rangle_{J}$ to be fixed.

Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2}, x_{3} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\}
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1}, \quad\left\langle\varphi^{2}\right\rangle_{J}=x_{2}, \quad\langle g(\varphi)\rangle_{J}=x_{3},
$$

## Extremal problem for two functionals

For two given real-valued function $f$ and $g$ on $\mathbb{R}$, maximize (or minimize) the value of the following integral functional

$$
\langle f(\varphi)\rangle_{J}
$$

over the ball $\mathrm{BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi)\rangle_{J}$ to be fixed.

Definition of the corresponding Bellman function.

$$
\mathbf{B}\left(x_{1}, x_{2}, x_{3} ; \varepsilon\right) \stackrel{\text { def }}{=} \sup _{\varphi}\left\{\langle f \circ \varphi\rangle_{J}\right\}
$$

Supremum is taken over the set of all functions $\varphi$ such that

$$
\langle\varphi\rangle_{J}=x_{1}, \quad\left\langle\varphi^{2}\right\rangle_{J}=x_{2}, \quad\langle g(\varphi)\rangle_{J}=x_{3}, \quad\|\varphi\| \leq \varepsilon
$$

## How to find the Bellman function

Now the Bellman function is defined on the following three dimensional domain:

$$
\Omega=\left\{x=\left(x_{1}, x_{2}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}, \mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right) \leq x_{3} \leq \mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\} .
$$

## How to find the Bellman function

Now the Bellman function is defined on the following three dimensional domain:
$\Omega=\left\{x=\left(x_{1}, x_{2}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}, \mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right) \leq x_{3} \leq \mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\}$.
We know the values of $\mathbf{B}$ on the skeleton of $\Omega$ :

$$
\mathbf{B}\left(x_{1}, x_{1}^{2}, g\left(x_{1}\right) ; \varepsilon\right)=f\left(x_{1}\right) .
$$

## How to find the Bellman function

Now the Bellman function is defined on the following three dimensional domain:
$\Omega=\left\{x=\left(x_{1}, x_{2}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}, \mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right) \leq x_{3} \leq \mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\}$.
We know the values of $\mathbf{B}$ on the skeleton of $\Omega$ :

$$
\mathbf{B}\left(x_{1}, x_{1}^{2}, g\left(x_{1}\right) ; \varepsilon\right)=f\left(x_{1}\right) .
$$

Moreover, since we know everything about solution of the two dimension problems $\mathbf{B}_{g}$, we know the boundary values on the upper boundary $\left\{x_{3}=\mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\}$ and on the lower boundary $\left\{x_{3}=\mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right)\right\}$.

## How to find the Bellman function

Now the Bellman function is defined on the following three dimensional domain:
$\Omega=\left\{x=\left(x_{1}, x_{2}, x_{2}\right): x_{1}^{2} \leq x_{2} \leq x_{1}^{2}+\varepsilon^{2}, \mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right) \leq x_{3} \leq \mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\}$.
We know the values of $\mathbf{B}$ on the skeleton of $\Omega$ :

$$
\mathbf{B}\left(x_{1}, x_{1}^{2}, g\left(x_{1}\right) ; \varepsilon\right)=f\left(x_{1}\right) .
$$

Moreover, since we know everything about solution of the two dimension problems $\mathbf{B}_{g}$, we know the boundary values on the upper boundary $\left\{x_{3}=\mathbf{B}_{g}^{\max }\left(x_{1}, x_{2}\right)\right\}$ and on the lower boundary $\left\{x_{3}=\mathbf{B}_{g}^{\min }\left(x_{1}, x_{2}\right)\right\}$.
So, to find the function $\mathbf{B}$ we look for the minimal locally concave function on $\Omega$ with the given boundary values.

## A triangle gluing right and left tangent foliations



Figure: Foliation for $\mathbf{B}_{g}^{\max }$, if $g(t)=|t|^{p}, p>2$.

## A cup gluing left and right tangent foliations



Figure: Foliation for $\mathbf{B}_{g}^{\min }$, if $g(t)=|t|^{p}, p>2$.

## Foliation for B

## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## Foliation for B



## How to find the sharp constant

After the Bellman function B with $f(t)=|t|^{r}$ and $g(t)=|t|^{p}$ is found, we are able to calculate the sharp constant as follows:

$$
C(p, r)=\sup _{\left(0, x_{2}, x_{3}\right) \in \Omega} \frac{\mathbf{B}\left(0, x_{2}, x_{3} ; \varepsilon\right)}{x_{3}} .
$$

## Multiplicative inequality

## Theorem

For any interval $I \in \mathbb{R}$ the inequality
$\|\varphi\|_{L^{r}(I)}^{r} \leq C(p, r) \cdot\|\varphi\|_{L^{p}(I)}^{p} \cdot\|\varphi\|_{\mathrm{BMO}(I)}^{r-p}, \quad \int_{I} \varphi(t) d t=0, \quad 1 \leq p \leq r<\infty$,
holds with the sharp constant

$$
C(p, r)=\frac{\Gamma(r+1)}{\Gamma(p+1)} \quad \text { if } \quad r>2
$$

