Sharp inequalities on BMO-space and Bellman function

Vasily Vasyunin

St. Petersburg department of the Steklov Mathematical Institute

April 8, 2021

Colloquium

Departement of Mathematics and Computer Science

St.-Petersburg State University

$$\langle \varphi \rangle_I = \frac{1}{|I|} \int_I \varphi(t) dt$$

is the average of φ over I.

$$\langle \varphi \rangle_I = \frac{1}{|I|} \int_I \varphi(t) dt$$

is the average of φ over I.

$$\sup_{I\subset J}\frac{1}{|I|}\int\limits_{I}|\varphi(t)-\langle\varphi\rangle_{I}|^{2}dt<\infty,$$

$$\langle \varphi \rangle_{I} = \frac{1}{|I|} \int_{I} \varphi(t) dt$$

is the average of φ over I.

$$\sup_{I\subset J}\frac{1}{|I|}\int\limits_{I}|\varphi(t)-\left\langle \varphi\right\rangle _{I}|^{2}dt<\infty,$$

$$\|\varphi\|_{\mathrm{BMO}(J)}^2 = \sup_{I \subset J} \frac{1}{|I|} \int_I |\varphi(t) - \langle \varphi \rangle_I |^2 dt$$

$$\langle \varphi \rangle_I = \frac{1}{|I|} \int_I \varphi(t) dt$$

is the average of φ over I.

$$\begin{split} \sup_{I \subset J} \frac{1}{|I|} \int_{I} |\varphi(t) - \langle \varphi \rangle_{I}|^{2} dt &< \infty, \\ \|\varphi\|_{\mathrm{BMO}(J)}^{2} &= \sup_{I \subset J} \frac{1}{|I|} \int_{I} |\varphi(t) - \langle \varphi \rangle_{I}|^{2} dt \\ &= \sup_{I \subset J} \left(\langle \varphi^{2} \rangle_{I} - \langle \varphi \rangle_{I}^{2} \right), \end{split}$$

$$\langle \varphi \rangle_I = \frac{1}{|I|} \int_I \varphi(t) dt$$

is the average of φ over I.

$$\sup_{I \subset J} \frac{1}{|I|} \int_{I} |\varphi(t) - \langle \varphi \rangle_{I}|^{2} dt < \infty,$$

$$\|\varphi\|_{\text{BMO}(J)}^{2} = \sup_{I \subset J} \frac{1}{|I|} \int_{I} |\varphi(t) - \langle \varphi \rangle_{I}|^{2} dt$$

$$= \sup_{I \subset J} \left(\langle \varphi^{2} \rangle_{I} - \langle \varphi \rangle_{I}^{2} \right),$$

$$\text{BMO}_{\varepsilon} \stackrel{\text{def}}{=} \{ \varphi \in \text{BMO} \colon \|\varphi\| \leq \varepsilon \}.$$

Extremal problem.

For a given real-valued function f on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball BMO_{ε} .

Extremal problem.

For a given real-valued function f on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball BMO_{ϵ} .

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1,x_2;\varepsilon) \stackrel{\mathrm{def}}{=} \sup_{\varphi} \{ \langle f \circ \varphi \rangle_{J} \}.$$

Extremal problem.

For a given real-valued function f on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball BMO_{ϵ} .

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1,x_2;\varepsilon) \stackrel{\mathrm{def}}{=} \sup_{\varphi} \{ \langle f \circ \varphi \rangle_{J} \}.$$

Supremum is taken over the set of all functions φ such that

$$\langle \varphi \rangle_I = x_1,$$

Extremal problem.

For a given real-valued function f on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball BMO_{ϵ} .

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1,x_2;\varepsilon) \stackrel{\mathrm{def}}{=} \sup_{\varphi} \{ \langle f \circ \varphi \rangle_{J} \}.$$

Supremum is taken over the set of all functions φ such that

$$\langle \varphi \rangle_J = x_1, \qquad \langle \varphi^2 \rangle_J = x_2,$$

Extremal problem.

For a given real-valued function f on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball BMO_{ϵ} .

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1,x_2;\varepsilon) \stackrel{\mathrm{def}}{=} \sup_{\varphi} \{ \langle f \circ \varphi \rangle_{J} \}.$$

Supremum is taken over the set of all functions φ such that

$$\langle \varphi \rangle_J = x_1, \qquad \langle \varphi^2 \rangle_J = x_2, \qquad \|\varphi\| \le \varepsilon.$$

Properties of the Bellman function

1 The Bellman function does not depend of the interval J, where test functions φ are defined.

Properties of the Bellman function

- **1** The Bellman function does not depend of the interval J, where test functions φ are defined.
- ② Domain of **B**:

$$\Omega_{\varepsilon} = \{x = (x_1, x_2) \colon x_1^2 \le x_2 \le x_1^2 + \varepsilon^2\}.$$

Properties of the Bellman function

1 The Bellman function does not depend of the interval J, where test functions φ are defined.

② Domain of B:

$$\Omega_{\varepsilon} = \{ x = (x_1, x_2) \colon x_1^2 \le x_2 \le x_1^2 + \varepsilon^2 \}.$$

Boundary values:

$$\mathbf{B}(x_1, x_1^2) = f(x_1).$$

Various choices of f

• Integral form of the John–Nirenberg inequality:

$$f(s) = e^{s}, \qquad \mathbf{B}(x; \varepsilon) = \sup_{\varphi} \{\langle e^{\varphi} \rangle_{J}\}.$$

Various choices of f

Integral form of the John–Nirenberg inequality:

$$f(s) = e^{s}, \qquad \mathbf{B}(x; \varepsilon) = \sup_{\varphi} \{\langle e^{\varphi} \rangle_{J}\}.$$

Classical weak form of the John–Nirenberg inequality:

$$f(s) = \chi_{(-\infty, -\lambda) \cup (\lambda, \infty)}(s),$$

$$\mathbf{B}(x; \varepsilon, \lambda) = \sup_{\varphi} \left\{ \frac{1}{|J|} \left| \{ t \in J \colon |\varphi(t)| \ge \lambda \} \right| \right\}.$$

Various choices of f

Integral form of the John–Nirenberg inequality:

$$f(s) = e^{s}, \qquad \mathbf{B}(x; \varepsilon) = \sup_{\varphi} \{\langle e^{\varphi} \rangle_{J}\}.$$

Classical weak form of the John–Nirenberg inequality:

$$f(s) = \chi_{(-\infty, -\lambda) \cup (\lambda, \infty)}(s),$$

$$\mathbf{B}(x; \varepsilon, \lambda) = \sup_{\varphi} \left\{ \frac{1}{|J|} \left| \{ t \in J \colon |\varphi(t)| \ge \lambda \} \right| \right\}.$$

• L^p-estimates, in particular, equivalence of different BMO-norms:

$$f(s) = |s|^p$$
, $\mathbf{B}(x; p, \varepsilon) = \sup_{\varphi} \{ \langle |\varphi|^p \rangle_J \}$.

$$\frac{d^2\mathbf{B}}{dx^2} = \begin{pmatrix} \frac{\partial^2\mathbf{B}}{\partial x_1^2} & \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} \\ \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} & \frac{\partial^2\mathbf{B}}{\partial x_2^2} \end{pmatrix} \leq 0.$$

$$\frac{d^2\mathbf{B}}{dx^2} = \begin{pmatrix} \frac{\partial^2\mathbf{B}}{\partial x_1^2} & \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} \\ \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} & \frac{\partial^2\mathbf{B}}{\partial x_2^2} \end{pmatrix} \leq 0.$$

Concavity has to be degenerate along some direction.

$$\frac{d^2\mathbf{B}}{dx^2} = \begin{pmatrix} \frac{\partial^2\mathbf{B}}{\partial x_1^2} & \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} \\ \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} & \frac{\partial^2\mathbf{B}}{\partial x_2^2} \end{pmatrix} \leq 0.$$

Concavity has to be degenerate along some direction.

The Hessian matrix $\frac{d^2\mathbf{B}}{dx^2}$ has to be degenerate.

$$\frac{d^2\mathbf{B}}{dx^2} = \begin{pmatrix} \frac{\partial^2\mathbf{B}}{\partial x_1^2} & \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} \\ \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} & \frac{\partial^2\mathbf{B}}{\partial x_2^2} \end{pmatrix} \leq 0.$$

Concavity has to be degenerate along some direction.

The Hessian matrix $\frac{d^2\mathbf{B}}{dx^2}$ has to be degenerate.

Monge-Ampère equation

$$\frac{\partial^2 \mathbf{B}}{\partial x_1^2} \cdot \frac{\partial^2 \mathbf{B}}{\partial x_2^2} = \left(\frac{\partial^2 \mathbf{B}}{\partial x_1 \partial x_2}\right)^2.$$

$$\frac{d^2\mathbf{B}}{dx^2} = \begin{pmatrix} \frac{\partial^2\mathbf{B}}{\partial x_1^2} & \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} \\ \frac{\partial^2\mathbf{B}}{\partial x_1\partial x_2} & \frac{\partial^2\mathbf{B}}{\partial x_2^2} \end{pmatrix} \leq 0.$$

Concavity has to be degenerate along some direction.

The Hessian matrix $\frac{d^2\mathbf{B}}{dx^2}$ has to be degenerate.

Monge-Ampère equation

$$\frac{\partial^2 \mathbf{B}}{\partial x_1^2} \cdot \frac{\partial^2 \mathbf{B}}{\partial x_2^2} = \left(\frac{\partial^2 \mathbf{B}}{\partial x_1 \partial x_2}\right)^2.$$

The Bellman function is a solution of the boundary value problems for this equation:

$$\mathbf{B}(x_1,x_1^2) = f(x_1).$$

Properties of the solutions of the Monge-Ampère equation

• Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.

Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.

Properties of the Monge-Ampère foliation

If two extremal lines intersect at a point, then B is linear

Properties of the solutions of the Monge-Ampère equation

- Integral curves of the vector field generated by the kernel vectors of the Hessian matrix are segments of straight lines.
- Solutions are linear along these extremal lines.
- All partial derivatives of the solution are constant on any extremal line.

Properties of the Monge-Ampère foliation

- If two extremal lines intersect at a point, then B is linear
- If an extremal line intersects the upper boundary $\{x: x_2 = x_1^2 + \varepsilon^2\}$, then it touches it tangentially.

The right tangent foliation

An examples for the left foliation

The function $f(s) = e^s$ produces the left foliation.

An examples for the left foliation

The function $f(s) = e^s$ produces the left foliation.

The corresponding Bellman function is

$$\mathbf{B}(x) = \frac{1 - \sqrt{\varepsilon^2 - x_2 + x_1^2}}{1 - \varepsilon} \exp\left\{x_1 + \sqrt{\varepsilon^2 - x_2 + x_1^2} - \varepsilon\right\}.$$

An examples for the left foliation

The function $f(s) = e^s$ produces the left foliation.

The corresponding Bellman function is

$$\mathbf{B}(x) = \frac{1 - \sqrt{\varepsilon^2 - x_2 + x_1^2}}{1 - \varepsilon} \exp\left\{x_1 + \sqrt{\varepsilon^2 - x_2 + x_1^2} - \varepsilon\right\}.$$

It gives the sharp constants in the integral form of the John–Nirenberg inequality:

Theorem

If ||f|| < 1, then

$$\langle e^f \rangle_J \leq \frac{e^{-\|f\|}}{1 - \|f\|} e^{\langle f \rangle_J}.$$

The constants are sharp.

The function $f(s) = -e^s$ produces the right foliation.

The function $f(s) = -e^s$ produces the right foliation.

This is equivalent to consideration of the same function $f(s) = e^s$, but looking for the infimum, rather than supremum.

The function $f(s) = -e^s$ produces the right foliation.

This is equivalent to consideration of the same function $f(s) = e^s$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$\mathbf{B}(x) = \frac{1 + \sqrt{\varepsilon^2 - x_2 + x_1^2}}{1 + \varepsilon} \exp\left\{x_1 - \sqrt{\varepsilon^2 - x_2 + x_1^2} + \varepsilon\right\}.$$

The function $f(s) = -e^s$ produces the right foliation.

This is equivalent to consideration of the same function $f(s) = e^s$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$\mathbf{B}(x) = \frac{1 + \sqrt{\varepsilon^2 - x_2 + x_1^2}}{1 + \varepsilon} \exp\left\{x_1 - \sqrt{\varepsilon^2 - x_2 + x_1^2} + \varepsilon\right\}.$$

Any smooth function f with f''' > 0 produces the left foliation.

The function $f(s) = -e^s$ produces the right foliation.

This is equivalent to consideration of the same function $f(s) = e^s$, but looking for the infimum, rather than supremum.

The corresponding Bellman function is

$$\mathbf{B}(x) = \frac{1 + \sqrt{\varepsilon^2 - x_2 + x_1^2}}{1 + \varepsilon} \exp\left\{x_1 - \sqrt{\varepsilon^2 - x_2 + x_1^2} + \varepsilon\right\}.$$

Any smooth function f with f''' > 0 produces the left foliation.

Any smooth function f with f''' < 0 produces the right foliation.

An example

Figure: A cup gluing left and right tangent foliations.

Example: $f(s) = |s|^p$, $1 \le p < 2$.

Figure: A triangle gluing right and left tangent foliations.

An example of gluing by a triangle

Figure: A triangle gluing left and right tangent foliations. Example: $f(s) = |s|^p$, p > 2.

A more difficult example of foliation

Figure: The Monge–Ampère foliation for $f(s) = |s|^p$, 0 .

A cup: singular foliations

An example

Figure: The Monge–Ampère foliation for $f(s) = -|s|^p$, 0 .

Theorem

• If 0 , then

$$2^{1-2/p} \|\varphi\|_{\mathrm{BMO}(J)} \le \|\varphi\|_{\mathrm{BMO}^p(J)} \le \|\varphi\|_{\mathrm{BMO}(J)},$$

Theorem

• If 0 , then

$$2^{1-2/p} \|\varphi\|_{\mathrm{BMO}(J)} \le \|\varphi\|_{\mathrm{BMO}^p(J)} \le \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $1 \le p \le 2$, then

$$\left(\frac{p}{2}\Gamma(p)\right)^{1/p}\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \|\varphi\|_{\mathrm{BMO}(J)},$$

Theorem

• If 0 , then

$$2^{1-2/p} \|\varphi\|_{\mathrm{BMO}(J)} \le \|\varphi\|_{\mathrm{BMO}^p(J)} \le \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $1 \le p \le 2$, then

$$\left(\frac{p}{2}\Gamma(p)\right)^{1/p}\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $2 \le p < \infty$, then

$$\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \left(\frac{p}{2}\,\Gamma(p)\right)^{1/p} \|\varphi\|_{\mathrm{BMO}(J)}.$$

Theorem

• If 0 , then

$$2^{1-2/p} \|\varphi\|_{\mathrm{BMO}(J)} \le \|\varphi\|_{\mathrm{BMO}^p(J)} \le \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $1 \le p \le 2$, then

$$\left(\frac{p}{2}\Gamma(p)\right)^{1/p}\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $2 \le p < \infty$, then

$$\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \left(\frac{p}{2}\,\Gamma(p)\right)^{1/p} \|\varphi\|_{\mathrm{BMO}(J)}.$$

Theorem

• If 0 , then

$$2^{1-2/p} \|\varphi\|_{\mathrm{BMO}(J)} \le \|\varphi\|_{\mathrm{BMO}^p(J)} \le \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $1 \le p \le 2$, then

$$\left(\frac{p}{2}\,\Gamma(p)\right)^{1/p}\|\varphi\|_{\mathrm{BMO}(J)}\leq \|\varphi\|_{\mathrm{BMO}^p(J)}\leq \|\varphi\|_{\mathrm{BMO}(J)},$$

• If $2 \le p < \infty$, then

$$\|\varphi\|_{\mathrm{BMO}(J)} \leq \|\varphi\|_{\mathrm{BMO}^p(J)} \leq \left(\frac{p}{2}\,\Gamma(p)\right)^{1/p} \|\varphi\|_{\mathrm{BMO}(J)}.$$

$$\|\varphi\|_{\mathrm{BMO}^p(J)}^p \stackrel{\mathrm{def}}{=} \sup_{I \subset J} \frac{1}{|I|} \int\limits_I |\varphi(t) - \langle \varphi \rangle_I|^p dt \,.$$

A bit more difficult situation

A bit more difficult situation

Figure: f(s) = 1 for $|s| > \lambda$ and f(s) = 0 for $|s| < \lambda$

Theorem

Theorem

The function $\mathbf{B}(x_1, x_2; \lambda, \varepsilon)$ has different expressions in different subdomains of Ω_{ε} :

• if $x \in \Omega_1$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1$;

Theorem

- if $x \in \Omega_1$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1$;
- if $x \in \Omega_2$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1 \frac{x_2 2(\lambda + \varepsilon)|x_1| + \lambda^2 + 2\varepsilon\lambda}{8\varepsilon^2}$

Theorem

- if $x \in \Omega_1$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1$;
- if $x \in \Omega_2$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1 \frac{x_2 2(\lambda + \varepsilon)|x_1| + \lambda^2 + 2\varepsilon\lambda}{8\varepsilon^2}$
- if $x \in \Omega_3$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{x_2 x_1^2}{x_2 + \lambda^2 2\lambda |x_1|}$;

Theorem

- if $x \in \Omega_1$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1$;
- if $x \in \Omega_2$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1 \frac{x_2 2(\lambda + \varepsilon)|x_1| + \lambda^2 + 2\varepsilon\lambda}{8\varepsilon^2}$
- if $x \in \Omega_3$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{x_2 x_1^2}{x_2 + \lambda^2 2\lambda |x_1|};$
- if $x \in \Omega_4$, then

$$\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{e}{2} \left(1 - \sqrt{1 - \frac{x_2 - x_1^2}{\varepsilon^2}} \right) \exp \left\{ \frac{|x_1| - \lambda}{\varepsilon} + \sqrt{1 - \frac{x_2 - x_1^2}{\varepsilon^2}} \right\};$$

Theorem

The function $\mathbf{B}(x_1, x_2; \lambda, \varepsilon)$ has different expressions in different subdomains of Ω_{ε} :

- if $x \in \Omega_1$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1$;
- if $x \in \Omega_2$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = 1 \frac{x_2 2(\lambda + \varepsilon)|x_1| + \lambda^2 + 2\varepsilon\lambda}{8\varepsilon^2}$;
- if $x \in \Omega_3$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{x_2 x_1^2}{x_2 + \lambda^2 2\lambda |x_1|};$
- if $x \in \Omega_4$, then

$$\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{e}{2} \left(1 - \sqrt{1 - \frac{x_2 - x_1^2}{\varepsilon^2}} \right) \exp \left\{ \frac{|x_1| - \lambda}{\varepsilon} + \sqrt{1 - \frac{x_2 - x_1^2}{\varepsilon^2}} \right\};$$

• if $x \in \Omega_5$, then $\mathbf{B}(x_1, x_2; \lambda, \varepsilon) = \frac{x_2}{4\varepsilon^2} \exp\left\{2 - \frac{\lambda}{\varepsilon}\right\}$.

Classical form of the John–Nirenberg inequality

Theorem

$$\left|\left\{t\in J\colon \left|f(t)-\left\langle f\right\rangle_{J}\right|\geq\lambda\right\}\right|\leq\frac{e^{2}}{4}\exp\left\{-\frac{\lambda}{\left\|f\right\|}\right\}\left|J\right|.$$

for all functions $f \in BMO(J)$. All constants are sharp.

Extremal problem for two functionals

For two given real-valued function f and g on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball ${\rm BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi) \rangle_J$ to be fixed.

Extremal problem for two functionals

For two given real-valued function f and g on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball ${\rm BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi) \rangle_J$ to be fixed.

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1, x_2, x_3; \varepsilon) \stackrel{\mathrm{def}}{=} \sup_{\varphi} \left\{ \left\langle f \circ \varphi \right\rangle_{J} \right\}.$$

Extremal problem for two functionals

For two given real-valued function f and g on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball ${\rm BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi) \rangle_J$ to be fixed.

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1, x_2, x_3; \varepsilon) \stackrel{\text{def}}{=} \sup_{\varphi} \left\{ \left\langle f \circ \varphi \right\rangle_J \right\}.$$

Supremum is taken over the set of all functions φ such that

$$\langle \varphi \rangle_J = x_1, \qquad \langle \varphi^2 \rangle_J = x_2,$$

Extremal problem for two functionals

For two given real-valued function f and g on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball ${\rm BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi) \rangle_J$ to be fixed.

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1, x_2, x_3; \varepsilon) \stackrel{\text{def}}{=} \sup_{\varphi} \left\{ \left\langle f \circ \varphi \right\rangle_J \right\}.$$

Supremum is taken over the set of all functions arphi such that

$$\langle \varphi \rangle_{J} = x_{1}, \qquad \langle \varphi^{2} \rangle_{J} = x_{2}, \qquad \langle g(\varphi) \rangle_{J} = x_{3},$$

Extremal problem for two functionals

For two given real-valued function f and g on \mathbb{R} , maximize (or minimize) the value of the following integral functional

$$\langle f(\varphi) \rangle_J$$

over the ball ${\rm BMO}_{\varepsilon}(J)$ assuming the value the second functional $\langle g(\varphi) \rangle_J$ to be fixed.

Definition of the corresponding Bellman function.

$$\mathbf{B}(x_1, x_2, x_3; \varepsilon) \stackrel{\text{def}}{=} \sup_{\varphi} \left\{ \left\langle f \circ \varphi \right\rangle_J \right\}.$$

Supremum is taken over the set of all functions arphi such that

$$\langle \varphi \rangle_J = x_1, \qquad \langle \varphi^2 \rangle_J = x_2, \qquad \langle g(\varphi) \rangle_J = x_3, \qquad \|\varphi\| \leq \varepsilon.$$

Now the Bellman function is defined on the following three dimensional domain:

$$\Omega = \{x = (x_1, x_2, x_2) \colon \, x_1^2 \leq x_2 \leq x_1^2 + \varepsilon^2, \; \mathbf{B}_g^{\mathsf{min}}(x_1, x_2) \leq x_3 \leq \mathbf{B}_g^{\mathsf{max}}(x_1, x_2) \} \, .$$

Now the Bellman function is defined on the following three dimensional domain:

$$\Omega = \{x = (x_1, x_2, x_2) \colon x_1^2 \le x_2 \le x_1^2 + \varepsilon^2, \ \mathbf{B}_g^{\mathsf{min}}(x_1, x_2) \le x_3 \le \mathbf{B}_g^{\mathsf{max}}(x_1, x_2) \} \ .$$

We know the values of **B** on the skeleton of Ω :

$$\mathbf{B}(x_1, x_1^2, g(x_1); \varepsilon) = f(x_1).$$

Now the Bellman function is defined on the following three dimensional domain:

$$\Omega = \{x = (x_1, x_2, x_2) \colon x_1^2 \le x_2 \le x_1^2 + \varepsilon^2, \ \mathbf{B}_g^{\mathsf{min}}(x_1, x_2) \le x_3 \le \mathbf{B}_g^{\mathsf{max}}(x_1, x_2) \} \ .$$

We know the values of **B** on the skeleton of Ω :

$$\mathbf{B}(x_1, x_1^2, g(x_1); \varepsilon) = f(x_1).$$

Moreover, since we know everything about solution of the two dimension problems \mathbf{B}_g , we know the boundary values on the upper boundary $\{x_3 = \mathbf{B}_g^{\text{max}}(x_1, x_2)\}$ and on the lower boundary $\{x_3 = \mathbf{B}_g^{\text{min}}(x_1, x_2)\}$.

Now the Bellman function is defined on the following three dimensional domain:

$$\Omega = \{x = (x_1, x_2, x_2) \colon x_1^2 \leq x_2 \leq x_1^2 + \varepsilon^2, \ \mathbf{B}_g^{\mathsf{min}}(x_1, x_2) \leq x_3 \leq \mathbf{B}_g^{\mathsf{max}}(x_1, x_2) \} \ .$$

We know the values of **B** on the skeleton of Ω :

$$\mathbf{B}(x_1, x_1^2, g(x_1); \varepsilon) = f(x_1).$$

Moreover, since we know everything about solution of the two dimension problems \mathbf{B}_g , we know the boundary values on the upper boundary $\{x_3 = \mathbf{B}_g^{\text{min}}(x_1, x_2)\}$ and on the lower boundary $\{x_3 = \mathbf{B}_g^{\text{min}}(x_1, x_2)\}$.

So, to find the function ${\bf B}$ we look for the minimal locally concave function on Ω with the given boundary values.

A triangle gluing right and left tangent foliations

Figure: Foliation for \mathbf{B}_g^{\max} , if $g(t) = |t|^p$, p > 2.

A cup gluing left and right tangent foliations

Figure: Foliation for \mathbf{B}_{g}^{\min} , if $g(t) = |t|^{p}$, p > 2.

How to find the sharp constant

After the Bellman function **B** with $f(t) = |t|^r$ and $g(t) = |t|^p$ is found, we are able to calculate the sharp constant as follows:

$$C(p,r) = \sup_{(0,x_2,x_3)\in\Omega} \frac{\mathbf{B}(0,x_2,x_3;\varepsilon)}{x_3}.$$

Multiplicative inequality

Theorem

For any interval $I \in \mathbb{R}$ the inequality

$$\|\varphi\|_{L^r(I)}^r \le C(p,r) \cdot \|\varphi\|_{L^p(I)}^p \cdot \|\varphi\|_{\mathrm{BMO}(I)}^{r-p}, \quad \int\limits_I \varphi(t) \, dt = 0, \quad 1 \le p \le r < \infty,$$

holds with the sharp constant

$$C(p,r) = \frac{\Gamma(r+1)}{\Gamma(p+1)}$$
 if $r > 2$.