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1 Commons

1.1 Asymptotic notation

Wewill be using standard big-𝑂 notation throughout the lecture notes. For two functions 𝑓, 𝑔 : Z>0 →
R>0,

• 𝑓 = 𝑂(𝑔) (𝑓 grows no faster than 𝑔), if there exists a constant 𝑐 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for
every 𝑛;

• 𝑓 = 𝑜(𝑔) (𝑓 grows slower than 𝑔), if lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛) = 0;

• 𝑓 = Ω(𝑔) (𝑓 grows no slower than 𝑔), if 𝑔 = 𝑂(𝑓);

• 𝑓 = 𝜔(𝑔) (𝑓 grows faster than 𝑔), if 𝑔 = 𝑜(𝑓).

By a superlinear or a superpolynomial function we mean a function that grows faster than a linear or
a polynomial function (that is, 𝑤(𝑛) and 𝑛𝜔(1)).
Problem 1.1 Give example of a function that grows faster than any polynomial (𝑛𝑐 for a constant 𝑐),
but slower than any exponential function (𝑐𝑛 for a constant 𝑐 > 1).

We also use a standard notation for a set of integers between 1 and 𝑛: [𝑛] ≔ {1, … , 𝑛}.

1.2 Boolean functions

By 𝐵𝑛,𝑚 we denote the set of all Boolean functions 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 with 𝑛 inputs and 𝑚 outputs.
By 𝐵𝑛 = 𝐵𝑛,1 we denote the set of all Boolean predicates on 𝑛 inputs. A function 𝑓 ∈ 𝐵𝑛,𝑚 is called
symmetric if its value depends on the sum of input bits only (equivalently, if its value does not change
under permuting the input values).
Problem 1.2 Find the size of 𝐵𝑛,𝑚.

Below, we show a few examples of interesting Boolean functions. Some of them demonstrate,
in particular, how a computational problem is converted into a sequence of Boolean functions. Note
also that there is a natural one-to-one correspondence between infinite sequences {𝑓𝑛 ∈ 𝐵𝑛}∞

𝑛=1 of
Boolean functions and languages 𝐿 ⊆ {0, 1}∗: 𝑓𝑛(𝑥) = 1 iff |𝑥| = 𝑛 and 𝑥 ∈ 𝐿.

• Symmetric functions:

Parity: ⊕𝑛(𝑥1, … , 𝑥𝑛) = 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑛.
Majority: MAJ(𝑥1, … , 𝑥𝑛) = [𝑥1 + ⋯ + 𝑥𝑛 > 𝑛/2].
Threshold: THR𝑘

𝑛(𝑥1, … , 𝑥𝑛) = [𝑥1 + ⋯ + 𝑥𝑛 ≥ 𝑘].
OR: ∨𝑛(𝑥1, … , 𝑥𝑛) = 𝑥1 ∨ ⋯ ∨ 𝑥𝑛 = THR1

𝑛(𝑥1, … , 𝑥𝑛).
Counting: MOD𝑚,𝑟

𝑛 (𝑥1, … , 𝑥𝑛) = [𝑥1 + ⋯ + 𝑥𝑛 ≡ 𝑟 mod 𝑚].
Sum: SUM𝑛 ∈ 𝐵𝑛,ℓ, where ℓ = ⌈log2(𝑛 + 1)⌉,

SUM𝑛(𝑥1, … , 𝑥𝑛) = (𝑤0, 𝑤1, … , 𝑤ℓ−1) :
𝑛

∑
𝑖=1

𝑥𝑖 =
ℓ−1
∑
𝑖=0

2𝑖𝑤𝑖 .

• Functions corresponding to NP-complete problems:

Hamiltonian cycle: HAM𝑛 : {0, 1}(𝑛
2) → {0, 1} outputs 1 iff the input graph (given by its adja-

cency matrix) contains a Hamiltonian path.
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Clique: CLIQUE𝑘
𝑛 : {0, 1}(𝑛

2) → {0, 1} outputs 1 iff the input graph contains a clique (that is,
a complete subgraph) of size 𝑘.

• Other functions:

Multiplexer: 𝑀 ∈ 𝐵𝑛+𝑘, where 𝑛 = 2𝑘, is defined as follows:

𝑀(𝑥0, … , 𝑥𝑘−1, 𝑦0, … , 𝑦𝑛−1) = 𝑦ℓ ,

where 0 ≤ ℓ < 𝑛 is an integer whose binary representation is (𝑥0, … , 𝑥𝑘−1). In other
words, it takes a bit sequence 𝑦 of length 𝑛 and (the binary representation of) an index 𝑥
and outputs the corresponding bit of 𝑦. (Also known as storage access function).

A conjunctive normal form (CNF) is a conjunction of clauses where a clause is a disjunction of
variables and their negations:

(¬𝑥2 ∨ 𝑥3) ∧ (𝑥1) ∧ (𝑥3 ∨ ¬𝑥1 ∨ 𝑥2) .

Problem 1.3 Prove that for each 𝑓 ∈ 𝐵𝑛, there exists a CNF computing 𝑓 .
Problem 1.4 Give example of a function from 𝐵𝑛 such that the size of any CNF computing it is Ω(2𝑛).

1.3 Satisfiability

The propositional satisfiability (SAT) problem is: given a Boolean formula in CNF, check whether it is
possible to assign Boolean values to its variables so that the formula evaluates to True. For example,
the formula:

(𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2) ∧ (¬𝑥2 ∨ ¬𝑥3) ∧ (𝑥3 ∨ ¬𝑥1)
is satisfiable: to satisfy it, one assigns 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1 (as usual, we use 0/1 as shortcuts for
False/True). However, by adding a clause (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) to the formula, one makes it unsatisfiable.

The state-of-the-art SAT-solvers are extremely efficient: they routinely solve instances from indus-
try with millions of variables. It is easy to install and use them. Say, one can check the satisfiability of
two formulas mentioned above using the following short Python code.

from pysat.solvers import Solver

clauses = [[1, -2, 3], [1, 2], [-2, -3], [3, -1]]
solver = Solver(bootstrap_with=clauses)
print(solver.solve())
print(solver.get_model())

solver.add_clause([-1, 2, -3])
print(solver.solve())

True
[1, -2, 3]
False

Problem 1.5 Try to come up with a relatively small CNF formula (say, with 500 variables) that is
hard for the state-of-the-art SAT-solvers.
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def sum2(x1, x2):
w0 = x1 ^ x2
w1 = x1 * x2
return w0, w1

𝑥1 𝑥2

∧𝑤1 ⊕ 𝑤0

def sum3(x1, x2, x3):
a = x1 ^ x2
b = x2 ^ x3
c = a | b
w0 = a ^ x3
w1 = c ^ w0
return w0, w1

𝑥1 𝑥2 𝑥3

⊕𝑎 ⊕𝑏

∨𝑐 ⊕ 𝑤0

⊕ 𝑤1

Figure 1: Optimal size straight line programs and circuits for SUM2 and SUM3. These two circuits are
known as half adder and full adder.

1.4 Boolean circuits

A Boolean straight line program of size 𝑟 for input variables (𝑥1, … , 𝑥𝑛) is a sequence of 𝑟 instructions
where each instruction 𝑔 ← ℎ ∘ 𝑘 applies a binary Boolean operation ∘ to two operands ℎ, 𝑘 each of
which is either an input bit or the result of a previous instruction. If 𝑚 instructions are designated as
outputs, the straight line program computes a function {0, 1}𝑛 → {0, 1}𝑚 in a natural way. We denote
the set of all such functions by 𝐵𝑛,𝑚 and we let 𝐵𝑛 = 𝐵𝑛,1. For a Boolean function 𝑓 : {0, 1}𝑛 →
{0, 1}𝑚, by C(𝑓) we denote the minimum size of a straight line program computing 𝑓 . A Boolean
circuit shows a flow graph of a program.

Figure 1 gives an example for the SUM𝑛 : {0, 1}𝑛 → {0, 1}ℓ function that computes the binary
representation of the sum of 𝑛 bits:

SUM𝑛(𝑥1, … , 𝑥𝑛) = (𝑤0, 𝑤1, … , 𝑤ℓ−1) :
𝑛

∑
𝑖=1

𝑥𝑖 =
ℓ−1
∑
𝑖=0

2𝑖𝑤𝑖, where ℓ = ⌈log2(𝑛 + 1)⌉ .

This function transforms 𝑛 bits of weight 0 into ℓ bits of weights (0, 1, … , ℓ − 1). The straight line
programs are given in Python programming language. This makes particularly easy to verify their
correctness. For example, the program for SUM3 can be verified with just three lines of code:

from itertools import product

for x1, x2, x3 in product(range(2), repeat=3):
w0, w1 = sum3(x1, x2, x3)
assert x1 + x2 + x3 == w0 + 2 * w1

Problem 1.6 Prove that for any function from 𝐵𝑛, there exists a circuit of size 𝑂(2𝑛) computing it.

Problem 1.7 Prove that C(⊕𝑛) = 𝑛 − 1.
Determining the exact value (as well as proving lower and upper bounds) of C(𝑓) might be tricky.

See Figure 2 for a toy example.
Problem 1.8 Design an algorithm that takes a circuit with 𝑛 inputs and 𝑠 gates and produces a CNF
formula with 𝑂(𝑠 + 𝑛) clauses that is equisatisfiable to the circuit in time 𝑂(𝑠 + 𝑛).

1.5 Complexity classes

Let 𝑃 be some computational problem. For our tasks, it will be enough to consider only “YES-or-NO”
problems, decision problems. So, let’s assume that every instance 𝑥 of the problem 𝑃 has answer either

5



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

SUM3

SUM3

0

SUM2

1

1

𝑤2 𝑤1 𝑤0

1 0

0

𝑥1 𝑥2 𝑥3

𝑥4 𝑥5

⊕𝑔1 ⊕𝑔2

∨𝑔3 ⊕𝑔4

⊕𝑔5

⊕𝑔6 ⊕ 𝑔7

∨ 𝑔8 ⊕ 𝑤0

⊕ 𝑔9

⊕ 𝑤1∧𝑤2

𝑥1 𝑥2 𝑥3

𝑥4 𝑥5

⊕𝑔1 ⊕𝑔2

∨𝑔3 ⊕𝑔4

⊕𝑔5 ⊕𝑔6 ⊕ 𝑔7

> 𝑔8 ⊕ 𝑤0

⊕ 𝑤1

> 𝑤2

(a) (b) (c)

Figure 2: (a) A schematic circuit for SUM5 composed out of two full adders and one half adder. (b) The
corresponding circuit of size 12. (c) An improved circuit of size 11.

“YES” or “NO”. To make it formal, we will associate 𝑃 with the set of all “YES”-instances coded in
binary. Now we can think of any computational problem 𝑃 as a set of bit strings

𝑃 ⊆ {0, 1}∗.

For example, the computational problem of checking that a graph is connected consists of encodings
of all connected graphs.

Definition 1.1

We say that computational problem 𝑃 is computable in time 𝑡(𝑛) if there is a Turing machine
𝑇 such that:

• if 𝑥 ∈ 𝑃 , 𝑇 (𝑥) outputs 1,

• otherwise, 𝑇 (𝑥) outputs 0,

• the number of steps 𝑇 (𝑥) does is at most 𝑡(|𝑥|).

Now we are ready to define the complexity class P.

Definition 1.2
Complexity class P is a set of all computational problems computable in polynomial time.

To define complexity class NP, we will need a notion of non-deterministic computation.

6



Definition 1.3

We say that computational problem 𝑃 is non-deterministically computable in time 𝑡(𝑛) if there
is a Turing machine 𝑇 with two input tapes such that

• if 𝑥 ∈ 𝑃 , then there exists 𝑦 ∈ {0, 1}∗ such that 𝑇 (𝑥, 𝑦) outputs 1,

• otherwise, 𝑇 (𝑥, 𝑦) outputs 0 for all 𝑦 ∈ {0, 1}∗,

• the number of steps 𝑇 (𝑥, 𝑦) does is at most 𝑡(|𝑥|).

Remark

Note that in 𝑡(𝑛) steps Turing machine can not read more then 𝑡(𝑛) bits of 𝑦. So, we can always
assume that |𝑦| ≤ 𝑡(|𝑥|).

Now we are ready to define class NP.

Definition 1.5
Complexity class NP is a set of all computational problems non-deterministically computable
in polynomial time.

Problem 1.9 Prove that P ⊆ NP.

Problem 1.10 Show that complexity classes P and NP would not change if in definitions we used
RAM machines instead of Turing machines.

Problem 1.11 Show that SAT ∈ NP.

Problem 1.12 Suppose that you are given an algorithm for decision SAT that works in time 𝑡(𝑛),
where 𝑛 is the number of variables. Show how to find a satisfying assignment in time 𝑂(𝑛 ⋅ 𝑡(𝑛)).

1.6 Communication complexity

1.6.1 Communication games for functions

Definition 1.6
Let 𝑋, 𝑌 , and 𝑍 be non-empty finite sets, and 𝑓 be a function, 𝑓 : 𝑋 × 𝑌 → 𝑍 . Two players,
Alice and Bob, are playing communication game for 𝑓 if Alice is given 𝑥 ∈ 𝑋, Bob is given
𝑦 ∈ 𝑌 , and their goal is to compute 𝑧 = 𝑓(𝑥, 𝑦). By communicating to each other one bit at a
time, Alice and Bob exchange information in order to compute 𝑓(𝑥, 𝑦). The game ends when
both players know 𝑓(𝑥, 𝑦). The minimal number of messages that is enough to compute 𝑓 on
any pair of inputs defines communication complexity of 𝑓 , denoted CC(𝑓). The players know 𝑓
in advance and can agree on some communication protocol for 𝑓 (i.e., communication scheme).

Remark
Every communication protocol for 𝑓 must be unambiguous, meaning that at every moment of
communication both players know who sends the next message, and also know is the com-
munication is over. In particular, every communication protocol uniquely identifies the player
who sends the first message. The players can not use clocks, timers or other physical devices.

Let 𝑋 = 𝑌 = {0, 1, 2}, 𝑍 = {0, 1, 2, 3, 4}, and 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦.
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Alice Bob

𝑥 𝑦

1

0

1

0

0

Figure 3: Communication of Alice and Bob.

Problem 1.13 Prove that CC(𝑓) ≤ 4.
Problem 1.14 Prove that there is a protocol for 𝑓 such that Alice and Bob send at most four bits, but
for some pairs of inputs (𝑥, 𝑦) the players send strictly less than four bits.

Problem 1.15 Prove that CC(𝑓) = 4.
Let 𝑋 = 𝑌 = {0, … , 2𝑘 − 1}, 𝑍 = {0, … , 22𝑘}, and 𝑓 = 𝑥 ⋅ 𝑦.

Problem 1.16 Prove that CC(𝑓) ≤ 2𝑘.
Problem 1.17 Let 𝑓 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑘. Show that CC(𝑓) ≤ 2𝑛.
Problem 1.18 Let 𝑓 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑘. Show that CC(𝑓) ≤ 𝑛 + 𝑘.
Problem 1.19 Let 𝑓 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑛, 𝑓(𝑥, 𝑦) = 𝑥. Prove that for every protocol there
is a pair of inputs (𝑥, 𝑦) such that the players send at least 𝑛 bits given 𝑥 and 𝑦, respectively.

To prove lower bounds on the communication complexity we need to define the notion of commu-
nication protocol more formally.
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Definition 1.8
Let 𝑋, 𝑌 , and 𝑍 be non-empty finite sets, and 𝑓 be a function, 𝑓 : 𝑋 × 𝑌 → 𝑍 . A communi-
cation protocol Π for function 𝑓 is an ordered rooted binary tree with the following labels and
additional information.

• every internal node is labeled with either “A” or “B”,

• every edge to a left child is labeled with “0”, every edge to a right child is labeled with “1”,

• every leaf is labeled with an element of 𝑍 .

For every internal node 𝑣 labeled with “A” there is a function 𝐴𝑣 : 𝑋 → {0, 1}, and for every
internal node 𝑢 labeled with “B” there is a function 𝐵𝑢 : 𝑌 → {0, 1}.

A value of the protocol Π on input (𝑥, 𝑦), denoted Π(𝑥, 𝑦), is defined as a label of the final
leaf of a root-to-leaf path 𝜋(𝑥, 𝑦), constructed using the following rules:

• first node of 𝜋(𝑥, 𝑦) is the root node,

• every next node of 𝜋(𝑥, 𝑦) is a child of the a previous one, moreover

– every node 𝑣 labeled with “A” is followed with a child connected by an edge with
label 𝐴𝑣(𝑥),

– every node 𝑢 labeled with “B” is followed with a child connected by an edge with
label 𝐵𝑢(𝑦),

• last node of 𝜋(𝑥, 𝑦) is a leaf.

The depth of the protocol is the depth of tree. The size of the protocol is the size of tree. The
protocol Π is a correct protocol for 𝑓 if for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , Π(𝑥, 𝑦) = 𝑓(𝑥, 𝑦).

A

A
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B

B
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1

1

0
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0

1

0
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B
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1
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1

1

0

1

0
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B

B

B

2

0

3

1

1

0

B

B

4

0

0

1

0

1

Figure 4: A simple communication protocol for 𝑓 : {0, 1, 2} × {0, 1, 2} → {0, 1, 2, 3, 4}, such that
𝑓(𝑥, 𝑦) = 𝑥 + 𝑦: Alice sends 𝑥 to Bob and Bob sends 𝑥 + 𝑦 back. Blue nodes define 𝜋(1, 2).

9



Definition 1.9

Communication complexity of function 𝑓 is the depth of the shallowest communication protocol
for 𝑓 .

A communication protocol defines the communication of players on all pairs of inputs. Labels on
internal nodes define who’s turn is to send a message, labels on edges — the messages, labels on leafs —
values of 𝑓(𝑥, 𝑦). The functions defined for internal nodes are the rules that the players use to choose
which message to send. For every pair of inputs (𝑥, 𝑦) there is a root-to-leaf path 𝜋(𝑥, 𝑦) defined by
the rules above. The protocol is correct for 𝑓 if for all pairs of inputs (𝑥, 𝑦) the corresponding path
𝜋(𝑥, 𝑦) ends in a leaf labeled with 𝑓(𝑥, 𝑦).
Problem 1.20 Let Π be a communication protocol for 𝑓 : 𝑋 × 𝑌 → 𝑍 . Suppose that for two distinct
pairs of inputs (𝑥1, 𝑦1) and (𝑥2, 𝑦2) the corresponding paths 𝜋(𝑥1, 𝑦1) and 𝜋(𝑥2, 𝑦2) end in the same
leaf ℓ. Prove that 𝜋(𝑥1, 𝑦2) and 𝜋(𝑥2, 𝑦1) end in ℓ too.

Problem 1.21 Suppose that Eve is eavesdropping the communication of Alice and Bob. Show that if
Eve knows the protocol then she can learn 𝑓(𝑥, 𝑦) even if she doesn’t know 𝑥 and 𝑦.

The equality function EQ𝑛 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} is defined by

EQ𝑛(𝑥, 𝑦) = 1 ⟺ 𝑥 = 𝑦.

Problem 1.22 Prove that CC(EQ𝑛) = 𝑛 + 1.
The greater function GT𝑛 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} compares two 𝑛-bit integers:

GT𝑛(𝑥, 𝑦) = 1 ⟺ 𝑥 > 𝑦.

Problem 1.23 Prove that CC(GT𝑛) = 𝑛 + 1.
The disjointness function DISJ𝑛 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} checks that there is no 𝑖 ∈ [𝑛] such

that 𝑥𝑖 = 𝑦𝑖 = 1:
DISJ𝑛(𝑥, 𝑦) = 1 ⟺ ∀𝑖 ∈ [𝑛], 𝑥𝑖 ≠ 1 ∨ 𝑦𝑖 ≠ 1.

Problem 1.24 Prove that CC(DISJ𝑛) ≥ 𝑛.

1.6.2 Communication games for relations

The communication game for functions can be generalized for relations.

Definition 1.10
Let 𝑋, 𝑌 , and 𝑍 be non-empty finite sets, and 𝑅 be a relation, 𝑅 ⊆ 𝑋 × 𝑌 × 𝑍 . Two players,
Alice and Bob, are playing communication game for 𝑅 if Alice is given 𝑥 ∈ 𝑋, Bob is given
𝑦 ∈ 𝑌 , and their goal is to compute 𝑧 ∈ 𝑍 such that (𝑥, 𝑦, 𝑧) ∈ 𝑅 (we assume that such
𝑧 always exists). By communicating to each other one bit at a time, Alice and Bob exchange
information in order to find 𝑧. The game ends when both players know the same 𝑧 satisfying
the condition. The minimal number of messages that is enough to find an appropriate 𝑧 for any
pair of inputs (𝑥, 𝑦) defines communication complexity of 𝑅, denoted CC(𝑅).

Definition 1.8 can be adapted for relations in a natural way.
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1.6.3 Karchmer–Wigderson games

The seminal work of Karchmer andWigderson [KW88] established a correspondence between DeMor-
gan formulas for non-constant Boolean function 𝑓 and communication protocols for the Karchmer–
Wigderson game for 𝑓 .

Definition 1.11

The Karchmer–Wigderson game for a function 𝑓 : {0, 1}𝑛 → {0, 1} is a particular case of a
communication game for a relation KW𝑓 :

KW𝑓 = {(𝑥, 𝑦, 𝑖) ∣ 𝑥, 𝑦 ∈ {0, 1}𝑛, 𝑖 ∈ [𝑛], 𝑓(𝑥) = 0, 𝑓(𝑦) = 1, 𝑥𝑖 ≠ 𝑦𝑖}.

A monotone version of the Karchmer–Wigderson game for a monotone function 𝑓 : {0, 1}𝑛 →
{0, 1} is a particular case for a relation KWm

𝑓 :

KWm
𝑓 = {(𝑥, 𝑦, 𝑖) ∣ 𝑥, 𝑦 ∈ {0, 1}𝑛, 𝑖 ∈ [𝑛], 𝑓(𝑥) = 0, 𝑓(𝑦) = 1, 𝑥𝑖 = 0 ∧ 𝑦𝑖 = 1}.

In the Karchmer–Wigderson game for some function 𝑓 : {0, 1}𝑛 → {0, 1}, Alice gets an input from
preimage of 0, Bob gets an input from preimage of 1, and their goal is to find a position where their
inputs differ. Note that such a position always exists. The monotone version is similar except that the
goal is to find a position where Alice’s bit is 0 and Bob’s bit is 1.

Theorem 1.12 (Karchmer, Wigderson [KW88])

Let 𝑓 : {0, 1}𝑛 → 1 be a non-constant Boolean function.
• For every De Morgan formula 𝜓 computing 𝑓 there is a communication protocol Π for
KW𝑓 with the same underlying tree.

• For every communication protocol for KW𝑓 there is a De Morgan formula 𝜓 computing
𝑓 with the same underlying tree.

This correspondence allows us to use communication complexitymethods for proving lower bounds
on formula depth and size.
Problem 1.25 Prove that CC(KW⊕𝑛

) ≤ 2⌈log𝑛⌉.

Problem 1.26 Prove that CC(KW∨𝑛
) = ⌈log𝑛⌉.

Problem 1.27 Let 𝑛, 𝑘 ∈ N be such that 𝑘 divides 𝑛. Suppose that we enforce the following restriction
on the structure of the communication protocol for ⊕𝑛.

1. Alice sends first and she can send any numbers of bits.

2. Bob replies with any numbers of bits.

3. Alice sends at most ⌈log 𝑘⌉ bits.

Show that there is a communication protocol for ⊕𝑛 satisfying the restrictions with complexity at most
𝑛/𝑘 + 𝑘 + 𝑂(log(𝑛)).

11



2 Circuit complexity

(We follow a recent excellent book by Jukna [Juk12] here. All the missing references can be found in
the book.)

2.1 Lecture 1: Circuit lower bounds

2.1.1 Connection to algorithms

Theorem 2.1 (Pippenger, Fischer, 1979 [PF79])

For any Turing machine with running time 𝑇 (𝑛) there exists a family of circuits {𝐶𝑛}∞
𝑛=1 for

the same computational problem such that 𝐶𝑛 has 𝑛 inputs and size 𝑂(𝑇 (𝑛) log𝑇 (𝑛)).

It follows that to prove that P ≠ NP it is enough to come up with a problem from NP of super-
polynomial circuit size. (More formally, we would like to construct a family of functions {𝑓𝑛}∞

𝑛=1 such
that 𝑓𝑛 ∈ 𝐵𝑛, ⋃∞

𝑛=1 𝑓−1
𝑛 (1) ∈ NP and C(𝑓) = superpoly(𝑛).)

At the same time, circuits is a non-uniform computational model meaning that to solve a given
computational problem one constructs an infinite sequence of circuits (a separate circuit for each input
length). Due to this, circuits are strictly more powerful than algorithms.
Problem 2.1 Construct an undecidable (that is, algorithmically unsolvable) language 𝐿 ⊆ {0, 1}∗

such that C(𝐿) ≤ 𝑛.

2.1.2 Maximum complexity

Theorem 2.2 (Shannon, 1949 [Sha49])

For almost all 𝑓 ∈ 𝐵𝑛,
C(𝑓) = Ω(2𝑛/𝑛) .

(That is, the fraction of such function goes to 1 with 𝑛 going to infinity.)

Theorem 2.3 (Muller, 1956 [Mul56]; Lupanov, 1958 [Lup59])

For any 𝑓 ∈ 𝐵𝑛,
C(𝑓) = 𝑂(2𝑛/𝑛) .

Problem 2.2 Prove that for any symmetric 𝑓 ∈ 𝐵𝑛,

C(𝑓) ≤ 5𝑛 + 𝑜(𝑛) .
Problem 2.3 Let 𝑛 ≤ 𝑠(𝑛) ≤ 𝑜(2𝑛/𝑛). Prove that circuits of size 𝑠 + 𝑛 are strictly more powerful
than circuits of size 𝑠: there exists 𝑓 ∈ 𝐵𝑛 such that 𝑠 < C(𝑓) ≤ 𝑠 + 𝑛.

2.1.3 Lower bounds

As a warm-up, we prove an exact bound on the circuit size of the parity function ⊕𝑛 over the basis
𝑈2 = 𝐵2 ⧵ {⊕, ≡}.

Theorem 2.4 (Schnorr, 1976 [Sch76])

C𝑈2
(⊕𝑛) = 3(𝑛 − 1) .
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Proving a 3𝑛 lower bound for the basis 𝐵2 is harder (than for the basis 𝑈2) as one cannot kill a ⊕-
gate by assigning a constant to one of its inputs. Interestingly, it is possible to overcome this difficulty
by using a more complicated function. Namely, 𝑓 ∈ 𝐵𝑛 is called an affine disperser for dimension 𝑑
if it is not constant on any affine subspace of F𝑛

2 of dimension at least 𝑑. Explicit constructions of
affine dispersers for sublinear dimension (that is, 𝑑 = 𝑜(𝑛)) are known. In the proof below, we will
use the following property of an affine disperser 𝑓 : let 𝑆 ⊆ {0, 1}𝑛 be a set of points of a Boolean
hypercube satisfying a (consistent) system of at most 𝑛 − 𝑑 affine equations (that is, equations of the
form ⨁𝑖∈𝐼 𝑥𝑖 = 𝑐), then, 𝑓 is not constant on 𝑆.

Theorem 2.5 (Demenkov, Kulikov, 2011 [DK11])

Let 𝑓 ∈ 𝐵𝑛 be an affine disperser for dimension 𝑑 = 𝑜(𝑛). Then,

C(𝑓) ≥ 3𝑛 − 𝑜(𝑛) .

Problem 2.4 Prove that
C(THR2

𝑛) ≥ 2𝑛 − 𝑂(1) ,
where THR2

𝑛(𝑥1, … , 𝑥𝑛) = [𝑥1 + ⋯ + 𝑥𝑛 ≥ 2].
Problem 2.5 Prove that

C(THR2
𝑛) ≤ 2𝑛 + 𝑜(𝑛) .

Problem 2.6 Prove that C(𝑀) ≤ 2𝑛 + 𝑜(𝑛), where 𝑀 ∈ 𝐵𝑛+log2 𝑛 is the multiplexer function.

2.1.4 Overview of known lower bounds

An overview of known lower bounds, together with its main ideas and functions used, can be found
in [DK11, Section 3]. The strongest known lower bound is 3.1𝑛 − 𝑜(𝑛) [JL21], the record lower bound
for a symmetric function is 2.5𝑛 − 𝑜(𝑛) [Sto77].

2.1.5 Research problems

• Prove a 3.5𝑛 lower bound for an explicit Boolean function!

• Is there an affine disperser for sublinear dimension of linear circuit size? (All other functions
with non-trivial lower bounds on circuit size can be computed by circuits of linear size.)

• Prove a 2.6𝑛 lower bound for a symmetric Boolean function!

• Prove a 4.4𝑛 upper bound for a symmetric Boolean function!

• Close the following gap!

2𝑛 − 𝑂(1) ≤ C(AND,OR,XOR) ≤ 2.5𝑛 − 𝑂(1)

2.2 Lecture 2: Formula lower bounds

A formula is a circuit whose graph is a tree. In other words, the out-degree of any gate is equal to one:
the value of any gate cannot be reused. It turns out that for formulas we do have superlinear lower
bounds.

We will consider two types of formulas: formulas over the full binary basis 𝐵2 and formulas over
{∧, ∨, ¬} also known as de Morgan formulas. The size of a formula is the number of leaves in it (it is

13



equal to the number of internal gates plus one and it is usually more convenient to work with). By L(𝑓)
and D(𝑓) we denote the minimum size and depth, respectively, of a formula computing 𝑓 .

It is not difficult to show that for any de Morgan formula there exists an equivalent formula (com-
puting the same function) of the same size where negations are applied to input variables only (to do
this, one uses de Morgan laws). Due to this, in the following by a de Morgan formula we mean a for-
mula with fan-in AND and OR gates with literals (variables and their negations) at the leaves.

2.2.1 Size versus depth

D(𝑓) = Θ(log L(𝑓)) . (1)

The lower bound D(𝑓) ≥ log2 L(𝑓) is immediate, so below we focus on an upper bound. Note that
nothing like (1) is known for circuits: the best known upper bound on the depth in terms of circuit size
is D(𝑓) = 𝑂(C(𝑓)/ logC(𝑓)).

Theorem 2.6 (Spira, 1971 [Spi71])

For any 𝑓 ∈ 𝐵𝑛,
D(𝑓) ≤ 3 log2 L(𝑓) .

The best known constant (that can be plugged instead of 3 above) is 1.73 due to Khrapchenko.

2.2.2 Full basis formulas

In this section, by L(𝑓) we mean the minimum size of a formula over the full binary basis 𝐵2 comput-
ing 𝑓 .

Theorem 2.7 (Nechiporuk, 1966)

Let 𝑛 = 2𝑘 and let 𝑓(𝑧, 𝑦) ∈ 𝐵2𝑛 be the following function: partition 𝑧 ∈ {0, 1}𝑛 into
𝑘 = log2 𝑛 blocks (of length 𝑛/ log2 𝑛), apply the parity function to each of the blocks, and
denote the resulting sequence of log2 𝑛 bits by 𝑥; then, the output of 𝑓(𝑧, 𝑦) is 𝑀(𝑥, 𝑦). Then,

L(𝑓) ≥ 𝑛2−𝑜(1) .

Theorem 2.8 (Nechiporuk, 1966)

Let 𝑓 ∈ 𝐵𝑛 and let 𝑌1, 𝑌2, … , 𝑌𝑚 be disjoint subsets of variables. By 𝑠𝑖 denote the number of
different subfunctions that one gets from 𝑓 by assigning constants to all variables but 𝑌𝑖. Then,

L(𝑓) ≥ 1
4

𝑚
∑
𝑖=1

log 𝑠𝑖 . (2)

Problem 2.7 Let 𝑛 = 2𝑚 log𝑚. The element distinctness function takes 𝑛 bits and treats them as 𝑚
integers 0 ≤ 𝑎1, … , 𝑎𝑚 < 𝑚2. It outputs 1 iff 𝑎𝑖’s are pairwise different. Prove that

L(ED) ≥ 𝑛2−𝑜(1) .
Problem 2.8 Prove that

L(CLIQUE3
𝑛) = Ω(𝑛3) .

Problem 2.9 Prove that Theorem 2.8 cannot give superquadratic lower bound: (2) is at most
𝑂(𝑛2/ log𝑛).

14



Problem 2.10 Prove that
L(MOD3,𝑟

𝑛 ) = 𝑂(𝑛2) .

2.2.3 De Morgan formulas

In this section, by L(𝑓) we mean the minimum size of a de Morgan formula computing 𝑓 .

Theorem 2.9 (Subbotovskaya, 1961)

L(⊕𝑛) = Ω(𝑛1.5) .

Theorem 2.10 (Khrapchenko, 1971)

L(⊕𝑛) = Θ(𝑛2) .

Problem 2.11 Prove that
L(THR𝑘

𝑛) ≥ 𝑘(𝑛 − 𝑘 + 1) .
(In particular, L(MAJ𝑛) = Ω(𝑛2).)

Theorem 2.11 (Andreev, 1987)

Let 𝑓 ∈ 𝐵2𝑛 be a function from Theorem 2.7. Then

L(𝑓) ≥ 𝑛2.5−𝑜(1) .

Problem 2.12 Prove that for any symmetric 𝑓 ∈ 𝐵𝑛 there exists a de Morgan formula of logarithmic
depth:

D(𝑓) = 𝑂(log𝑛) .
(This is a challenging problem. One way to solve it is to design an efficient protocol for the corre-
sponding Karchmer–Wigderson game, see Definition 1.11. Another way is to design a logarithmic
depth circuit for SUM𝑛.)

2.2.4 Overview of known lower bounds

For the full binary basis, the quadratic lower bounds by Nechiporuk remain unbeaten for 55 years al-
ready! For deMorgan formulas, the strongest lower bound𝑛3−𝑜(1) was proved byHåstad in 1991 [Hås98a].
An exposition of known lower bounds is given in Jukna’s book [Juk12, Chapter 6].

2.2.5 Research problems

• Prove an 𝑛2+𝜀 lower bound for formulas over 𝐵2!

• Prove an 𝜔(𝑛 log𝑛) lower bound for formulas over 𝐵2 for a symmetric function!

• Prove an 𝑛3+𝜀 lower bound for de Morgan formulas!

• Prove an 𝑛2+𝜀 lower bound for de Morgan formulas for a symmetric function!
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2.3 Lecture 3: Depth three circuit lower bounds

2.3.1 Connections to unrestricted circuits

Theorem 2.12 (Valiant, 1977 [Val77])

For any 𝜀 > 0, there exists 𝛿(𝜀) such that: if 𝑓 ∈ 𝐵𝑛 can be computed by a circuit of size 𝜀𝑛
and depth 𝜀 log2 𝑛, then it can also be computed by a depth 3 circuit of the following form:

OR
2

𝛿𝑛
log log𝑛

∘ AND ∘ OR√𝑛 .

Lemma 2.13 (Erdős, Graham, Szemeredi, 1975 [EGS75])

Let 𝐺(𝑉 , 𝐸) be a graph of depth 2𝑘. One can remove |𝐸|/𝑘 edges from 𝐺 to reduce its depth
to at most 2𝑘−1.

2.3.2 A simple lower bound

2.3.3 Overview of known lower bounds

2.3.4 Research problems

3 Formula complexity

3.1 Block composition and KRW conjecture

Karchmer, Raz, andWigderson [KRW95] suggested an approach for proving superpolynomial formula
size lower bound for Boolean functions from class P. The suggested approach is to prove lower bounds
on the formula depth of the block-composition of two arbitrary Boolean functions.

Definition 3.1

Let 𝑓 : {0, 1}𝑚 → {0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} be Boolean functions. The block-composition
𝑓 ⋄ 𝑔 : ({0, 1}𝑛)𝑚 → {0, 1} is defined by

(𝑓 ⋄ 𝑔)(𝑥1, … , 𝑥𝑚) = 𝑓(𝑔(𝑥1), … , 𝑔(𝑥𝑚)),

where 𝑥1, … , 𝑥𝑚 ∈ {0, 1}𝑛.

Let D(𝑓) denote the minimal depth of De Morgan formula for function 𝑓 . It is easy to show that
D(𝑓 ⋄𝑔) ≤ D(𝑓)+D(𝑔) by constructing a formula for 𝑓 ⋄𝑔 by substituting every variable in a formula
for 𝑓 with a copy of the formula for 𝑔. Karchmer, Raz, and Wigderson [KRW95] conjectured that this
upper bound is roughly optimal.

Conjecture 3.2 (The KRW conjecture)

Let 𝑓 : {0, 1}𝑚 → {0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} be non-constant functions. Then

D(𝑓 ⋄ 𝑔) ≈ D(𝑓) + D(𝑔).

If the conjecture is true then there is a polynomial-time computable function that does not have
De Morgan formula of polynomial size, and hence P ⊈ NC1. Consider the function ℎ: {0, 1}𝑛 ×
{0, 1}𝑛 → {0, 1}, which interprets its first input as a truth table of a function 𝑓 : {0, 1}log𝑛 → {0, 1}
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and computes the value of the block-composition of log𝑛/ log log𝑛 functions 𝑓 on its second input:

ℎ(𝑓, 𝑥) = ( 𝑓 ⋄ ⋯ ⋄ 𝑓⏟
log𝑛/ log log𝑛

)(𝑥).

It is not hard to see that ℎ ∈ P. To show that ℎ ∉ NC1, let ̃𝑓 be a function with maximal depth
complexity. By Shannon’s counting argument ̃𝑓 has depth complexity roughly log𝑛. Assuming the
KRW conjecture, the function ̃𝑓 ⋄ ⋯ ⋄ ̃𝑓 has depth complexity roughly log𝑛 ⋅ (log𝑛/ log log𝑛) =
𝜔(log𝑛), and hence ̃𝑓 ⋄⋯⋄ ̃𝑓 ∉ NC1. Any formula for ℎ must compute ̃𝑓 ⋄⋯⋄ ̃𝑓 if we hard-wire 𝑓 = ̃𝑓
in it, so ℎ ∉ NC1. This argument is especially attractive since it does not seem to break any known
meta mathematical barriers such as the concept of “natural proofs” by Razborov and Rudich [RR97]
(the function ℎ is very special, so the argument does not satisfy “largeness” property).

It worth noting that the proof would work even assuming some weaker version of the KRW con-
jecture, like D(𝑓 ⋄ 𝑔) ≥ D(𝑓) + 𝜀 ⋅ D(𝑔) or D(𝑓 ⋄ 𝑔) ≥ 𝜀 ⋅ D(𝑓) + D(𝑔) for some 𝜀 > 0.
Problem 3.1 Show that the following versions of the KRW conjecture imply P ⊈ NC1:

1. D(𝑓 ⋄ 𝑔) ≥ D(𝑓) + 𝜀 ⋅ D(𝑔) for 𝜀 > 0,

2. D(𝑓 ⋄ 𝑔) ≥ 𝜀 ⋅ D(𝑓) + D(𝑔) for 𝜀 > 0,

3. L(𝑓 ⋄ 𝑔) ≥ L(𝑓) ⋅ L(𝑔)𝜀 for 𝜀 > 0,

4. L(𝑓 ⋄ 𝑔) ≥ L(𝑓)𝜀 ⋅ L(𝑔) for 𝜀 > 0,

5. D(𝑓 ⋄ 𝑔) ≥ 𝜀1 ⋅ D(𝑓) + 𝜀2 ⋅ D(𝑔) for 𝜀1, 𝜀2 > 0 such that 𝜀1 + 𝜀2 > 1.
Problem 3.2 Prove that for any non-constant 𝑓: {0, 1}𝑛 → {0, 1}, 𝐿(∨𝑚 ⋄ 𝑓) = 𝑚 ⋅ L(𝑓).

3.2 KRW conjecture and communication complexity

Conjecture 3.2 can be reformulated in terms of communication complexity of the Karchmer–Wigderson
game for the block-composition of two arbitrary Boolean functions. Let CC(𝑅) denotes deterministic
communication complexity of a relation 𝑅. For convenience, we also define a block-composition for
KW relations, so that the following equality holds: KW𝑓⋄𝑔 = KW𝑓 ⋄ KW𝑔.

KW𝑓⋄𝑔 = {(𝑋, 𝑌 , (𝑖, 𝑗)) ∣ 𝑋, 𝑌 ∈ {0, 1}𝑚×𝑛, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛],

𝑓(𝑔(𝑋1), … , 𝑔(𝑋𝑚)) = 0, 𝑓(𝑔(𝑌1), … , 𝑔(𝑌𝑚)) = 1, 𝑋𝑖,𝑗 ≠ 𝑌𝑖,𝑗.}

This leads to the following reformulation of the KRW conjecture.

Conjecture 3.3 (The KRW conjecture (reformulation))

Let 𝑓 : {0, 1}𝑚 → {0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} be non-constant functions. Then

CC(KW𝑓 ⋄ KW𝑔) ≈ CC(KW𝑓) + CC(KW𝑔).

The study of Karchmer–Wigderson games had already been shown to be a potent tool in the mono-
tone setting — the monotone KW games were used to separate the monotone counterparts of classes
NC1 and NC2 [KW88]. Therefore, there is a reason to believe that the communication complexity
perspective might help to prove new lower bounds in the non-monotone setting.
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3.3 Universal relations

In a series of works [Edm+01; HW90; Gav+17; DM18; KM18; Rez+20] several steps were taken towards
proving the KRW conjecture. In the first two works [Edm+01; HW90] the authors proved the similar
bound for the block-composition of two universal relations.

Definition 3.4
The universal relation of length 𝑛,

U𝑛 = {(𝑥, 𝑦, 𝑖) ∣ 𝑥, 𝑦 ∈ {0, 1}𝑛, 𝑖 ∈ [𝑛], 𝑥𝑖 ≠ 𝑦𝑖} ∪ {(𝑥, 𝑥, ⟂) ∣ 𝑥 ∈ {0, 1}𝑛}.

Acommunication problem for the universal relation is a generalization of the Karchmer–Wigderson
games: Alice and Bob are given 𝑛-bit distinct strings and their goal is to find a coordinate 𝑖 ∈ [𝑛] such
that 𝑥𝑖 ≠ 𝑦𝑖. In contrast to KW games, in this game Alice and Bob can be given the same input string —
in that case, they have to output a special symbol ⟂ to indicate that the promise is broken. Intuitively,
the universal relation is a more complex communication problem than KW game because the players
do not have proof that their inputs are different.
Problem 3.3 Prove that CC(U𝑛) ≥ 𝑛 + 1.
Problem 3.4 Prove that CC(U𝑛) ≤ 𝑛 + 𝑂(1).
Problem 3.5 LetU′

𝑛 = {(𝑥, 𝑦, 𝑖) ∣ 𝑥, 𝑦 ∈ {0, 1}𝑛, 𝑖 ∈ [𝑛], 𝑥𝑖 ≠ 𝑦𝑖}. Show that CC(U′
𝑛) ≤ CC(U𝑛) ≤

CC(U′
𝑛) + 2.

For any non-constant 𝑓 : {0, 1}𝑛 → {0, 1}, there is a natural reduction from KW𝑓 to U𝑛: given inputs
(𝑥, 𝑦) for KW𝑓 the players follow a protocol for U𝑛, the protocol outputs some 𝑖 such that 𝑥𝑖 ≠ 𝑦𝑖, the
players output 𝑖 as it is a correct output for KW𝑓 .

The block-composition of the universal relations generalizes the block-composition of KW games
in the same manner.

Definition 3.5
The block-composition U𝑚 ⋄ U𝑛 of two universal relations is defined by

U𝑚 ⋄ U𝑛 = {((𝑎, 𝑋), (𝑏, 𝑌 ), (𝑖, 𝑗)) ∣ 𝑋𝑖,𝑗 ≠ 𝑌𝑖,𝑗}

∪ {((𝑎, 𝑋), (𝑏, 𝑌 ), ⟂) ∣ ∃𝑘 ∈ [𝑚]: 𝑎𝑘 ≠ 𝑏𝑘 ∧ 𝑋𝑘 = 𝑌𝑘}

∪ {((𝑎, 𝑋), (𝑏, 𝑌 ), ⟂) ∣ 𝑎 = 𝑏},

where 𝑎, 𝑏 ∈ {0, 1}𝑚, 𝑋, 𝑌 ∈ {0, 1}𝑚×𝑛, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛].

A similar reduction uses a protocol for the block-composition of the universal relations to solve
the block-composition KW games. Thus, proving lower bounds for the universal relations seems to be
a natural first step.

Theorem 3.6 (Proved in [Edm+01; HW90], improved in [KM18])

For any 𝑛, 𝑚 ∈ N,
CC(U𝑚 ⋄ U𝑛) = 𝑚 + 𝑛 − 𝑂(log𝑚).

In particular, it is relatively easy to understand a special case of this result, proved in [HW90].
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Theorem 3.7 (Proved in [HW90])

For any 𝑛 ∈ N,
CC(U𝑛 ⋄ U𝑛) ≥ 2𝑛 − 1.

In the subsequentworks [Gav+17; KM18], the authors proved a lower bound on the block-composition
of the Karchmer–Wigderson relation for an arbitrary function and the universal relation. This result
is presented in terms of the number of leaves rather than formula depth.

Theorem 3.8 (Proved in [Gav+17], improved in [KM18])

For any 𝑛, 𝑚 ∈ N, and non-constant 𝑓: {0, 1}𝑚 → {0, 1}

CC(𝑓 ⋄ U𝑛) = log L(𝑓) + 𝑛 − 𝑂(log𝑚).

Note that it is still not known whether the following conjecture is true.

Conjecture 3.9

For any 𝑛, 𝑚 ∈ N, and non-constant 𝑓: {0, 1}𝑚 → {0, 1}

CC(𝑓 ⋄ U𝑛) = CC(KW𝑓) + 𝑛 − 𝑂(log𝑚).

3.4 Latest results on KRW conjecture

In [DM18], the authors presented an alternative proof for the block-composition of an arbitrary func-
tion with the parity function in the framework of the Karchmer–Wigderson games (this result was
originally proved in [Hås98b] using an entirely different approach). Their result gives an alternative
proof of the cubic lower bound for Andreev’s function [Hås98b].

Theorem 3.10 (Proved in [DM18])

Let 𝑓: {0, 1}𝑚 → {0, 1} be a non-constant function. Then,

L(𝑓 ⋄ ⊕𝑛) ≥ L(𝑓) ⋅ L(⊕𝑛)
2𝑂̃(√𝑚+log𝑛)

.

In the most recent paper [Rez+20] of the series, the authors extended the range of inner functions
that can be handled in the monotone version of the KRW conjecture to all functions whose depth
complexity can be lower bounded via query-to-communication lifting theorem. They also introduce an
intermediate semi-monotone setting where only inner function is monotone and show a lower bound
on the composition of the (non-monotone) universal relation with every monotone inner function for
which a lower bound can be proved using a lifting theorem.

In the last section of [Edm+01], the authors introduced the same functionmultiplexer communication
game, that is very similar to the Karchmer–Wigderson game for the multiplexer function.

Definition 3.11

The multiplexer function of size 𝑛 is a function M𝑛 : {0, 1}2𝑛 × {0, 1}𝑛 → {0, 1} with two
arguments, such that M𝑛(𝑓, 𝑥) = 𝑓𝑥. It is convenient to interpret the string 𝑓 as a truthtable
of some function 𝑓 : {0, 1}𝑛 → {0, 1}, so we can say that M𝑛(𝑓, 𝑥) = 𝑓(𝑥).
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In the KW game for M𝑛, Alice gets a function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑥 ∈ {0, 1}𝑛, such that
𝑓(𝑥) = 0, Bob gets a function 𝑔 : {0, 1}𝑛 → {0, 1} and 𝑦 ∈ {0, 1}𝑛, such that 𝑔(𝑦) = 1. Their goal
is to find a coordinate 𝑖 ∈ [2𝑛 + 𝑛] such that (𝑓, 𝑥)𝑖 ≠ (𝑔, 𝑦)𝑖. The authors of [Edm+01] suggest to
consider a version of this game where players are given the same function, i.e., 𝑓 = 𝑔, so they only
need to find the differing coordinate between 𝑥 and 𝑦.

Definition 3.12

In the same function multiplexer communication game (the multiplexer game)MUX𝑛, Alice gets a
function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑥 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 0, Bob gets the same function
𝑔 : {0, 1}𝑛 → {0, 1} and 𝑦 ∈ {0, 1}𝑛 such that 𝑔(𝑦) = 1. Their goal is to find a coordinate
𝑖 ∈ [𝑛] such that 𝑥𝑖 ≠ 𝑦𝑖, or output ⟂ if 𝑓 ≠ 𝑔 (if 𝑥 ≠ 𝑦 and 𝑓 ≠ 𝑔 then both outputs are
possible).

The same function multiplexer communication game can be considered as a generalization of the
Karchmer–Wigderson games for Boolean functions on 𝑛 bits. Indeed, solving the KW game for any
𝑔 : {0, 1}𝑛 → {0, 1} can be reduced to the same function multiplexer game: Alice and Bob are given 𝑔
and the corresponding 𝑥 and 𝑦. Given that we already have a lower bound on 𝑓 ⋄U𝑛 [Gav+17; KM18],
it looks natural to study the block-composition of the KW game for an arbitrary function and the same
function multiplexer game. The detailed explanation how a lower bound on the block-composition of
the KW game for an arbitrary function and the same function multiplexer might be used to separate P
and NC1, see [Mei20] for details (to the best of our knowledge, this result was independently proved
by Russell Impagliazzo).

Remark 3.13
The KW game for M𝑛 can also be considered as a generalization of KW games using the same
reduction. On the other hand, it is unclear whether lower bounds on the block-composition
with it implies any new results. Moreover, the following lower bound applies. Let L(𝑓) denotes
the minimal size of De Morgan formula computing 𝑓 .

Theorem 3.14

For any 𝑚, 𝑛 ∈ N with 𝑛 ≥ 6 log𝑚, and any non-constant function 𝑓 : {0, 1}𝑚 → {0, 1},

CC(KW𝑓⋄M𝑛
) ≥ log𝐿(𝑓) + 𝑛 − 𝑂(log∗ 𝑛).

4 Proof Complexity

4.1 Basic Definitions

Proof system for a language 𝐿 ⊆ {0, 1}∗ is a polynomial-time computable function Π: {0, 1}∗ ×
{0, 1}∗ → {0, 1} such that:

• 𝑥 ∈ 𝐿 iff there exists 𝑦 ∈ {0, 1}∗ such that Π(𝑥, 𝑦) = 1;

• 𝑥 ∉ 𝐿 iff Π(𝑥, 𝑦) = 0 for all 𝑦 ∈ {0, 1}∗.

We focus on UNSAT that is a language that consists of unsatifiable boolean formulas in CNF.

Resolution. The width of a clause 𝐶 is the number of literals in 𝐶 . A CNF formula is a conjunction of
clauses and a width-𝑘 CNF formula, or simply a 𝑘-CNF formula, is a CNF formula where every clause
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has width at most 𝑘. A resolution derivation from a CNF formula 𝜑 of a clause 𝐶 is a sequence of clauses
(𝐶1, … , 𝐶𝜏) such that 𝐶𝜏 = 𝐶 and, for each 𝑖 ∈ [𝜏], 𝐶𝑖 is either a clause of 𝜑, or is some clause 𝐶𝑗 ∨𝐷
obtained by weakening a clause 𝐶𝑗, for some 𝑗 < 𝑖, or is derived from 𝐶𝑗 and 𝐶𝑗′ , for some 𝑗, 𝑗′ < 𝑖
by applying the resolution rule

𝐵 ∨ 𝑥 𝐷 ∨ ¬𝑥
𝐵 ∨ 𝐷

where 𝐶𝑗 = 𝐵 ∨ 𝑥, 𝐶𝑗′ = 𝐷 ∨ ¬𝑥, and 𝐶𝑖 = 𝐵 ∨ 𝐷. The size/length of a resolution proof (𝐶1, … , 𝐶𝜏)
is 𝜏 and its width is the maximum width of any clause in the proof. A resolution proof (i.e. proof of
unsatisfiability) of 𝜑 is a proof of the empty clause ∅ from it.

A resolution proof (𝐶1, … , 𝐶𝜏) can also be viewed as a DAG, with nodes [𝜏 ] and, for all 𝑖, 𝑗 ∈ [𝜏],
a directed edge from 𝑗 to 𝑖 if 𝐶𝑗 was used to derive 𝐶𝑖. If the DAG is a tree the proof is tree-like.

4.2 Proofs and Applications

Definition 4.1

An unsatisfied clause search problem Search𝜑 for an unsatisfiable CNF formula 𝜑 ≔ ⋀
𝑖∈𝐼

𝐶𝑖 on 𝑛
variables is defined as follows:

input: an 𝑛-variable assignment 𝑧 ∈ {0, 1}𝑛;

output: an element 𝑖 ∈ 𝐼 such that clause 𝐶𝑖 of 𝜑 is falsified by 𝑧.

Decision trees. Let 𝑋 ≔ {𝑥1, … , 𝑥𝑛} be a set of propositional variables and 𝒪 be a finite set. A
decision tree is a tree. Every vertex of the tree is labeled by a variable from 𝑋, or by an element of the
set 𝒪 with respect to the following properties:

• if a vertex is labeled by 𝑜 ∈ 𝒪, then it is a leaf;

• if a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is labeled by
0 and the other one is labeled by 1.

Every decision tree 𝑇 defines a function 𝑓𝑇 : {0, 1}𝑛 → 𝒪. We assume that every input 𝑧 ∈ {0, 1}𝑛

induces a path from root to leaf in a natural way. If this path ends in a vertex with a label 𝑜 ∈ 𝒪 then
we define 𝑓𝐵(𝑧) ≔ 𝑜.

We say that 𝐵 is a decision tree for the relation 𝑆 ⊆ {0, 1} × 𝒪 iff 𝑓𝐵 is consistent with 𝑆: namely
if 𝑓𝐵(𝑧) = 𝑜 then (𝑧, 𝑜) ∈ 𝑆.

Theorem 4.2

Decision trees for Search𝜑 (aka DPLL algorithms for SAT problem) are equivalent to tree-like
resolution proof of 𝜑.

Problem 4.1 A Horn clause is a clause with at most one positive literal and a Horn formula is a CNF
formulas that consists of Horn clauses. Let 𝜑 be a Horn formula of size 𝑚. Show that there is a decision
tree for Search𝜑 of size poly(𝑚).

Problem 4.2 Let 𝐺 ≔ (𝑉 , 𝐸) be a directed acyclic graph. For each vertex 𝑣 ∈ 𝑉 we introduce a
propositional variable 𝑥𝑣 and create a clause (¬𝑥𝑣 ∨ ⋁

𝑢:(𝑢,𝑣)∈𝐸
𝑥𝑢). Also we add unit clauses (𝑥𝑤) for

all sinks 𝑤. Show that there is a decision tree for the Search problem of size poly(|𝑉 |).
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Problem 4.3 The Ordering Principle, denoted as OP, is a CNF formula defined on propositional vari-
ables 𝑥𝑢,𝑣 for every two distinct 𝑢, 𝑣 ∈ [𝑛], with the intended meaning that 𝑥𝑢,𝑣 is true when 𝑢 is
smaller than 𝑣 in the partial order. The clauses of OP are

¬𝑥𝑢,𝑣 ∨ ¬𝑥𝑣,𝑤 ∨ 𝑥𝑢,𝑤 for any three distinct 𝑢, 𝑣, 𝑤 ∈ [𝑛],
𝑥𝑢,𝑣 ∨ 𝑥𝑣,𝑢 for any two distinct 𝑢, 𝑣 ∈ [𝑛],
¬𝑥𝑢,𝑣 ∨ ¬𝑥𝑣,𝑢 for any two distinct 𝑢, 𝑣 ∈ [𝑛],

⋁
𝑢:𝑢≠𝑣

𝑥𝑢,𝑣 for any 𝑣 ∈ [𝑛].

Show that:

• any tree-like resolution proof of OP has size 2Ω(𝑛);

• trere is a dag-like resolution proof of OP of size poly(𝑛).

Monotone computations. Proof systems like resolution are weak enough and we can proof uncon-
ditional lower bounds for it. Surprisingly these lower bounds can be used for proving lower bounds
on the much stronger computational models like monotone boolean formulas or monotone circuits.

At first we show a construction of a function that we associate with a CNF formula. Let start with
some formula 𝜑:

• 𝜑(𝑥) ≔ ⋁ 𝐶𝑗;

• 𝑔 : {0, 1}𝑘 × {0, 1}ℓ → {0, 1} is some function that we call gadget;

• 𝜑 ∘ 𝑔 ≔ 𝜑(𝑔(𝑦1, 𝑧1), 𝑔(𝑦2, 𝑧2), 𝑔(𝑦3, 𝑧3), … ).

Let say that a formula 𝜓 is a translation of the formula 𝜑 ∘ 𝑔 into CNF, 𝜓(𝑦, 𝑧) ≔
𝑚
⋁

𝑗=1
𝐷𝑗. Let

𝑌 ≔ {0, 1}𝑛𝑘 and 𝑍 ≔ {0, 1}𝑛𝑘, define a partial monotone function 𝐹𝜓 : {0, 1}𝑚 → {0, 1} in the
following way:

• with an assignment 𝑎 ∈ 𝑌 of 𝑦 variables we associate a vector 𝑤 ∈ {0, 1}𝑚:

– 𝑤𝑖 = 1 iff there is an assignment 𝑏 ∈ 𝑍 to 𝑧 variables such that 𝐷𝑖(𝑎1, 𝑏1, 𝑎2, 𝑏2, … ) = 0;
and say that 𝐹𝜓(𝑤) ≔ 1.

• with an assignment 𝑏 ∈ 𝑍 of 𝑧 variables we also associate a vector 𝑤 ∈ {0, 1}𝑚:

– 𝑤𝑖 = 0 iff there is an assignment 𝑎 ∈ 𝑌 to 𝑦 variables such that 𝐷𝑖(𝑎1, 𝑏1, 𝑎2, 𝑏2, … ) = 0;
and say that 𝐹𝜓(𝑤) ≔ 0.

In our examples we focus on Ind𝑚 ≔ {0, 1}log𝑚 × {0, 1}𝑚 → {0, 1} such that Ind𝑚(𝑥, 𝑦) ≔ 𝑦𝑥.
Some example is given on fig. 5. Inner rectangles correspond to the sets of assignments that violate

some clause 𝐷𝑖. Horizontal line is equivalent to some 𝑎 ∈ 𝑌 and corresponds to the first case, and
vertical line is equivalent to some 𝑏 ∈ 𝑍 and corresponds to the second case.

Theorem 4.3 (Raz, McKenzie [RM99]; Göös, Pitassi, Watson [GPW15])

Resolution depth of 𝜑 is at least 𝑑 ⇒ CC(Search𝜑∘Ind𝑚
) ≥ 𝑑 log𝑛, where 𝑚 ≔ poly(𝑛).

In other words CC(Search𝜑∘Ind𝑚
) ≈ CC(Ind𝑚) ⋅ res-depth(𝜑).
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Figure 5: 𝐹𝜓(1, 1, 0, … ) ≔ 1, 𝐹𝜓(1, 0, 0, … ) ≔ 0

Corollary: lower bound on monotone formulas 2𝑛𝜀 .
Problem 4.4 Show that CC(Search𝜑∘Ind𝑚

) ≤ CC(Ind𝑚) ⋅ res-depth(𝜑).
We can go a bit deeper and consider dag-like analog of communication games. However, we most

intuitive definition is not extremely useful. But the characterization via “rectangles” give us the analog
of the Karchmer–Wigderson result.

Definition 4.4 (Razborov [Raz95]; Pudlák [Pud10]; Sokolov [Sok17])

Let 𝑋, 𝑌 ⊆ {0, 1}𝑛 be two sets. Let 𝐻 be a directed acyclic graph and each vertex 𝑣 ∈ 𝐻 is
marked by some rectangle 𝑅𝑣 ≔ 𝑋𝑣 × 𝑌𝑣. We say that it is dag-like communication game for a
relation 𝑆 ⊆ 𝑋 × 𝑌 × 𝒪 iff:

• inner nodes of 𝐻 has out degree 2;

• 𝑅root = 𝑋 × 𝑌 ;

• if 𝑎, 𝑏 are children of ℎ then 𝑅ℎ ⊆ 𝑅𝑎 ∪ 𝑅𝑏;

• if ℎ is a leaf then:

– ℎ is marked by some 𝑜 ∈ 𝒪;
– ∀(𝑥, 𝑦) ∈ 𝑅ℎ the triple (𝑥, 𝑦, 𝑜) ∈ 𝑆.

The size of the game is the size of the graph 𝐻 .

Problem 4.5 Show that any classical communication protocol for some relation of size 𝑆 is itself a
dag-like communication protocol for the same relation.

Theorem 4.5 (Garg, Göös, Kamath, Sokolov [Gar+18])

Resolution size 𝜑 at least 𝑆 ⇒ size of dag-like protocols for Search𝜑∘Ind𝑚
at least Ω(𝑆), where

𝑚 ≔ poly(𝑛).

Corollary: lower bound on monotone circuits 2𝑛𝜀 .
Problem 4.6 Show that size of dag-like protocols for Search𝜑∘Ind𝑚

is at most size of resolution proof
of 𝜑 ∘ Ind𝑚.
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4.3 Tree-like Resolution Lower Bounds

Consider a game that is useful for proving tree-like lower bounds. There are two players: Prover and
Delayer and unsatisfiable CNF formula 𝜑. Delayer tries to convince Prover that formula is satisfiable,
and Prover wants to catch the Prover.

Prover may ask a value of some variable 𝑥. A Delayer may choose an answer {0, 1} or say “choose
any” (∗) and in this case Prover chooses any preferred value. In the last case Prover give Delayer a
coin. The game finishes if current partial assignment violates some clause of 𝜑.

Theorem 4.6
If there is a tree-like resolution proof of 𝜑 of size 𝑠 then Prover can wins the game with log 𝑠
coins.

For proving lower bounds it will be enough to create the strategy for Delayer that helps him to get
a lot of coins.

We start with the description of the hard formulas. The Pigeonhole Principle stating that there is
no injective mapping of 𝑚 pigeons into 𝑛 holes if 𝑚 > 𝑛 (PHP𝑚

𝑛 ). This is one of the simplest, and yet
most useful, combinatorial principles in mathematics, and it has been topic of extensive study in proof
complexity. Since we wish to study unsatisfiable formulas, we encode the claim that there does in fact
exist an injective mapping of pigeons to holes as a CNF formula consisting of pigeon axioms

𝑃𝑖 ≔ ⋁
𝑗∈[𝑛]

𝑥𝑖𝑗 for 𝑖 ∈ [𝑚]

and hole axioms
𝐻𝑘

𝑖,𝑖′ ≔ ¬𝑥𝑖𝑗 ∨ ¬𝑥𝑖′𝑗 for 𝑖, 𝑖′ ∈ [𝑚], 𝑗 ∈ [𝑛].
Let describe the strategy. In the beginning players have the empty partial assignment 𝜌 and at each

step they extend it for one variable. We say that hole 𝑗 is occupied for a pigeon 𝑖 iff (𝑥𝑖,𝑗 = 0) ∈ 𝜌 or
there is a pigeon 𝑘 such that (𝑥𝑘,𝑗 = 1) ∈ 𝜌. Suppose Prover asks a value of a variable 𝑥𝑖,𝑗:

• if there is ℓ such that 𝑥𝑖,ℓ = 1 then 𝜌 ≔ 𝜌 ∪ {𝑥𝑖,𝑗 = 0};

• if hole 𝑗 is occupied for a pigeon 𝑖 then 𝜌 ≔ 𝜌 ∪ {𝑥𝑖,ℓ = 0};

• if there are more than 𝑛/2 holes are occupied for a pigeon 𝑖 then 𝜌 ≔ 𝜌 ∪ {𝑥𝑖,ℓ = 1};

• Prover may choose the value for 𝑥𝑖,𝑗.

Theorem 4.7

In this strategy Delayer gets at least 𝑛/2 coins.

As a corollary we get the 2Ω𝑛 lower bound on the size of any tree-like resolution proof of PHP𝑚
𝑛

for any 𝑚.
Why is it not good enough?

1. It is only tree-like (modern sat solvers cannot be described by tree-like resolution).

2. the width of the formula is large (for the lower bounds on monotone computations we need
formulas of small enough width).
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4.4 Random Formulas

Definition 4.8

Let ℱ(𝑚, 𝑛, Δ) denote the distribution of random Δ-CNF on 𝑛 variables obtained by sampling
𝑚 clauses (out of the (𝑛

Δ)2Δ possible clauses) uniformly at random with replacement.

Lemma 4.9 (Chválal, Szemerédi [CS88])

For any Δ ≥ 3 whp 𝜑 ∼ ℱ(𝑚, 𝑛, Δ) is unsatisfiable if 𝑚 ≥ ln 2 ⋅ 2Δ𝑛.

With a random formula 𝜑 we associate a bipartite dependency graph (𝐿, 𝑅, 𝐸) in a natural way:

• 𝐿 corresponds to clauses of 𝜑;

• 𝑅 corresponds to variables of 𝜑;

• (𝑢, 𝑣) ∈ 𝐸 iff a variable 𝑥𝑣 appears in a clause 𝐶𝑢 (maybe with a negation).

Theorem 4.10

LetΔ be big enough constant and𝑚 = 𝒪 (𝑛) thenwhp any resolution proof of𝜑 ∼ ℱ(𝑚, 𝑛, Δ)
should have size exp(𝑛).

In fact Δ = 3 and 𝑚 ≪ 𝑛Δ/2 is sufficient for this result.
The following Lemma gives us the key property that we want to use for proving lower bounds, it

is a modification of well-known result for random graphs (see [Vad12]). For definitions see the next
section.

Lemma 4.11

If 𝑚 = 𝒪 (𝑛), Δ > 11 and 𝜑 ∼ ℱ(𝑚, 𝑛, Δ) then whp 𝐺𝜑 is an (𝑟, Δ, 5)-boundary expander
where 𝑟 = Ω( 𝑛

Δ).

Problem 4.7 Let 𝜑 be a formula on 𝑛 variables. Show that size of any resolution proof of 𝜑 ∘ ⊕2 is
2Ω(𝑤) where 𝑤 is the least resolution width of 𝜑.

4.4.1 Expander Graphs

We use the following notation: N𝐺(𝑆) is the set of neighbours of the set of vertices 𝑆 in the graph 𝐺,
𝜕𝐺(𝑆) is the set of unique neighbours of the set of vertices 𝑆 in the graph 𝐺. We omit the index 𝐺 if
the graph is evident from the context.

A bipartite graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-expander if all vertices 𝑢 ∈ 𝐿 have degree at
most Δ and for all sets 𝑆 ⊆ 𝐿, |𝑆| ≤ 𝑟, it holds that |N(𝑆)| ≥ 𝑐 ⋅ |𝑆|. Similarly, 𝐺 ≔ (𝐿, 𝑅, 𝐸) is
an (𝑟, Δ, 𝑐)-boundary expander if all vertices 𝑢 ∈ 𝐿 have degree at most Δ and for all sets 𝑆 ⊆ 𝐿,
|𝑆| ≤ 𝑟, it holds that |𝜕𝑆| ≥ 𝑐 ⋅ |𝑆|. In this context, a simple but useful observation is that

|N(𝑆)| ≤ |𝜕𝑆| + Δ|𝑆| − |𝜕𝑆|
2 = Δ|𝑆| + |𝜕𝑆|

2 ,

since all non-unique neighbours have at least two incident edges. This implies that if a graph 𝐺 is an
(𝑟, Δ, (1 − 𝜀)Δ)-expander then it is also an (𝑟, Δ, (1 − 2𝜀)Δ)-boundary expander.

Some useful properties of expander graphs are given in Appendix A. Also your can find there some
proofs of the following lemmas.

25



Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) denote a bipartite graph. Consider a closure operation that seems to have
originated in [AR03; Ale+04].

Definition 4.12

For vertex sets 𝑆 ⊆ 𝐿, 𝑈 ⊆ 𝑅 we say that the set 𝑆 is (𝑈, 𝑟, 𝜈)-contained if |𝑆| ≤ 𝑟 and
|𝜕𝑆 ⧵ 𝑈| < 𝜈|𝑆|. For any set 𝐽 ⊆ 𝑅 let 𝑆 ≔ Cl𝑟,𝜈(𝐽) denote an arbitrary but fixed set of
maximal size such that 𝑆 is (𝐽, 𝑟, 𝜈)-contained.

Lemma 4.13

Suppose that 𝐺 is an (𝑟, Δ, 𝑐)-boundary expander and that 𝐽 ⊆ 𝑅 has size |𝐽 | ≤ Δ𝑟. Then
|Cl𝑟,𝜈(𝐽)| < |𝐽|

𝑐−𝜈 .

Suppose 𝐽 ⊆ 𝑅 is not too large. Then Lemma 4.13 shows that the closure of 𝐽 is not much larger.
Thus, after removing the closure and its neighbourhood from the graph, we are still left with a decent
expander. The following lemma makes this intuition precise.

Lemma 4.14

Let 𝐽 ⊆ 𝑅 be such that |𝐽 | ≤ Δ𝑟 and |Cl𝑟,𝜈(𝐽)| ≤ 𝑟
2 and let 𝐺′ ≔ 𝐺 ⧵ (Cl𝑟,𝜈(𝐽) ∪ 𝐽 ∪

N(Cl𝑟,𝜈(𝐽))). Then any set 𝑆 of vertices from the left side of 𝐺′, with size |𝑆| ≤ 𝑟
2 , satisfies

that |𝜕𝐺′𝑆| ≥ 𝜈|𝑆|.

4.4.2 Delayer Strategy

Let describe the strategy.

Algorithm 1 𝐺 ≔ {𝐿, 𝑅, 𝐸} is a dependency graph
1: 𝜌 ≔ ∅
2: while we can do do
3: Prover query a variable 𝑥 ∈ 𝑅
4: If 𝑥 is assigned by 𝜌 then answer this value and go to next iteration
5: Prover may chose the value 𝑥 (wlog 𝑥 = 𝑏)
6: Remove 𝑥 from 𝑅
7: 𝐵 ≔ max{𝑆 ⊆ 𝐿 ∣ |𝐵| ≤ 𝑟, |𝜕𝐺(𝐵)| ≤ 3|𝐵|} ▷ Note: 3 < 5
8: Pick an assignment 𝜈 on N(𝐵) that satisfy all constraints from the set 𝐵
9: Remove 𝐵 from 𝐿 and N(𝐵) from 𝑅

10: 𝜌 ≔ 𝜌 ∪ {𝑥 = 𝑏} ∪ 𝜈

Theorem 4.15

If dependency graph of 𝜑 is (𝑟, Δ, 5)-expander then Delayer gets at least Ω ( 𝑟
Δ) coins.

In fact this strategy give us the lower bound on the resolution width.

Theorem 4.16

If dependency graph of 𝜑 is (𝑟, Δ, 5)-expander then any resolution proof have width at least
Ω ( 𝑟

Δ).
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4.4.3 Restriction Argument

We start with the lower bound on the CNF representation of parity function on 𝑛 inputs. For the sake
of contradiction assume that we have CNF of size at most (8

7)𝑛/2.

1. In any CNF should be a clause that contains all 𝑛 variables.

2. Hit our CNF by random restriction 𝜌:

• choose 𝑛/2 variables with probability uniformly at random;
• for each chosen variable choose a value uniformly at random.

3. Each clause of width 𝑤 ≥ 𝑛/4 will be set to 1 by 𝜌 with probability at least:

(1 − 𝑤
2𝑛)

𝑛/2
≥ (7

8)
𝑛/2

.

Hence if CNF was small then there is an assignment that maps all clauses of width at least 𝑛/4
to 1.

4. After application of 𝜌 parity is still parity on 𝑛/2 variables. And it is a contradiction.

For proving resolution lower bounds we want to use similar arguments. Let 𝜋 ≔ (𝐷1, … , 𝐷ℓ) be
a Resolution proof of some formula 𝜑 and 𝐻 is a set of clauses of width at least 𝑤0. For the sake of
contradiction assume that 𝜋 has small size and apply the following algorithm.

1. If 𝜋 is small then 𝐻 is small.

2. Pick the most frequent literal 𝑦 in 𝐻 . Note that it is contained in at least 𝑤0/𝑛 fraction of clauses.

3. Set 𝑦 to 1 in 𝜋. This operation set to 1 all clauses that contain 𝑦. Hence we can erase them from
the proof.

4. After this assignment 𝜋 ↾ (𝑦 = 1) is still a proof of a restricted formula.

5. Repeat while we have clauses of large width.

If 𝐻 is small we kill all clauses of large width in a few iterations. To achieve a contradiction we want to
show that if we peek a “perfect” formula 𝜑 then even after a restriction described above any resolution
proof should have width large than 𝑤0.

Here is the algorithm that reduces a proof size into a proof of small width.
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Algorithm 2 𝜋 is a resolution proof of our fomula, 𝑟, 𝜀 are a parameters
1: 𝑂1 ≔ ∅ ▷ Set of active input bits
2: 𝐺1 ≔ 𝐺 ▷ 𝐺𝑖 = (𝐿𝑖, 𝑅𝑖, 𝐸𝑖)
3: 𝑖 ≔ 1
4: 𝜌1 ≔ ∅
5: 𝐻 ≔ {clauses in 𝜋 of width at least 𝜀𝑛}
6: while 𝐻 is not empty do
7: Pick the most frequent literal 𝑦. It correspond to a variable 𝑥 ∈ 𝑅𝑖
8: Pick an value 𝑏 that maps 𝑦 to 1
9: 𝑂𝑖+1 ≔ 𝑂𝑖 ∪ {𝑥}

10: 𝐺′
𝑖+1 ≔ 𝐺𝑖 ⧵ {𝑥}

11: 𝐵𝑖 ≔ max{𝐵 ⊆ 𝐿′
𝑖+1 ∣ |𝐵| ≤ 𝑟/2, |𝜕𝐺′

𝑖+1
(𝐵)| ≤ 3|𝐵|} ▷ Note: 3 < 5

12: Pick an assignment 𝜈𝑖 on N𝐺′
𝑖+1

(𝐵𝑖) that satisfy all constraints from the set 𝐵𝑖
13: 𝐺𝑖+1 ≔ 𝐺′

𝑖+1 ⧵ (𝐵𝑖 ∪ N𝐺′
𝑖+1

(𝐵𝑖))
14: 𝜌𝑖+1 ≔ 𝜌𝑖 ∪ {𝑥 = 𝑏} ∪ 𝜈𝑖
15: Hit all elements in 𝐻 by 𝜌𝑖+1
16: 𝑖 ≔ 𝑖 + 1

return 𝜌𝑖

To conclude the lower bound on the size of resolution proofs we need to show that after application
of 𝜌𝑖 to a random formula whp it remains hard in terms of width.

Lemma 4.17 (Informal)

For all 𝑖 the graph 𝐺𝑖 is an (𝑟, Δ, 3)-expander.

And arguments that we used for tree-like will give us the desired width lower bound.

4.5 Polynomial Calculus Lower Bounds

A set 𝐼 of polynomials is an ideal if 𝐼 is closed under linear combination and multiplication by any
polynomial from F[𝑋]. Given a set of polynomials 𝑆 ≔ {𝑔1, … , 𝑔𝑘}, the ideal generated by 𝑆 is defined
as the smallest ideal 𝐼 ≔ ⟨𝑆⟩ that contains the set 𝑆. A literal is either a variable 𝑥 or its negation ̄𝑥.
In PCR — and contrary to the classic boolean setting — the value 0 is interpreted as true and the value
1 as false. Note that we treat 𝑥 and ¬𝑥 as two distinct variables. We refer to set of variables by 𝑋 —
which contains both positive and negative variables — and we work over the polynomial ring F[𝑋].

Polynomial Calculus. By analogy with Resolution we can define Polynomial Calculus (PCRF) proof
system. The PCRF proof system contains the following axioms:

• boolean axioms: 𝑥2 − 𝑥 for all variables 𝑥;
• complementary axioms: 𝑥 + ̄𝑥 − 1 for all variables 𝑥.
And the following derivation rules:

• linear combination: 𝑝 𝑞
𝛼𝑝+𝛽𝑞 for any 𝛼, 𝛽 ∈ F, 𝑝, 𝑞 ∈ F[𝑋];

• multiplication: 𝑝
𝑥𝑝 for any 𝑝 ∈ F[𝑋].

The PCRF-proof of unsatisfiability of a system of polynomial equations ℱ ≔ {𝑓𝑖 = 0}𝑚
𝑖=1 is a

sequence of polynomials (𝑝1, 𝑝2, 𝑝3, … , 𝑝ℓ) such that each element is either a polynomial from ℱ, an
axiom, or obtained from previous by using the derivation rules, and 𝑝ℓ = 1.
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Lets consider an example F ≔ R:

⎧{{
⎨{{⎩

𝑥 + 𝑦 + 𝑧 − 2 = 0
𝑥𝑦 = 0
𝑥𝑧 = 0
𝑦𝑧 = 0

𝑥2 − 𝑥

𝑥 + 𝑦 + 𝑧 − 2
𝑥2 + 𝑥𝑦 + 𝑦𝑧 − 2𝑥

𝑥𝑦 𝑦𝑧
𝑥𝑦 + 𝑦𝑧

𝑥2 − 2𝑥
𝑥

⋮
𝑦 + 𝑧

𝑥 + 𝑦 + 𝑧 𝑥 + 𝑦 + 𝑧 − 2
1

The size of a PCR refutation is the total number of non-zero monomials (counted with repetition)
that appear in the derivation when all polynomials are expanded out as linear combinations of mono-
mials. The degree of a PCR refutation is the maximal degree of a non-zero monomial that appears in
the derivation.

4.5.1 Polynomials and Reduction Over Ideals

In this section we care only about values of polynomials on boolean cube, hence we consider only
ideals that contain polynomials 𝑥2 − 𝑥 for all 𝑥 ∈ 𝑋.

Let 𝐼 be an ideal. We say that set 𝑉𝐼 ≔ {𝑎 ∈ F𝑛 ∣ ∀𝑝 ∈ 𝐼, 𝑝(𝑎) = 0} is a variety of ideal 𝐼 . Note
that since our ideals contain polynomials 𝑥2 − 𝑥 then varieties of these ideals are subsets of boolean
cube.
Problem 4.8 𝑝 ∈ 𝐼 iff ∀𝑎 ∈ 𝑉𝐼 , 𝑝(𝑎) = 0.

Two polynomials 𝑝, 𝑞 are said to be equivalent modulo an ideal 𝐼 , written 𝑝 ∼𝐼 𝑞 if 𝑝 − 𝑞 ∈ 𝐼 .
This relation is an equivalence relation. For any polynomial 𝑝 we fix a special representative of the
equivalence class [𝑝] that we call the reduction of 𝑝 modulo 𝐼 and write as 𝑅𝐼(𝑝). If an ideal 𝐼 is
generated by a set of polynomials 𝑆, we abuse notation slightly and write 𝑅𝑆(𝑝) for 𝑅𝐼(𝑝).

To define the representative, we fix any order ≺ on the polynomials that respects inclusion:

1. monomial 𝑚1 ≺ 𝑚2 whenever 𝑚1 is a submonomial of 𝑚2;

2. extend this to a total order on monomials arbitrarily;

3. finally, extend this order to polynomials by comparing the largest monomials (under ≺) that
appear in the polynomials.

𝑅𝐼(𝑝) is then defined as min({𝑞 ∈ [𝑝]}).
Problem 4.9 ∀𝑎 ∈ 𝑉𝐼 , 𝑝(𝑎) = (𝑅𝐼(𝑝))(𝑎).
Problem 4.10 Check the following properties of 𝑅𝐼 :

• 𝑅𝐼(𝛼𝑝 + 𝛽𝑞) = 𝛼𝑅𝐼(𝑝) + 𝛽𝑅𝐼(𝑞), where 𝛼, 𝛽 ∈ F;

• 𝑅𝐼(𝑥𝑝) = 𝑅𝐼(𝑥𝑅𝐼(𝑝)), where 𝑥 is a variable.

4.5.2 Lower Bounds on Polynomial Calculus and 𝑅 Operator

The restriction part works pretty well also for Polynomial Calculus and we can reduce the question
about size of the proof to a question about the degree of the proof. So we need some machinery for
proving lower bounds on the degree.

Let ℱ be a system of polynomial equations. Everything that we can derive in PCR lives in the ideal
ℱ. Hence:

• 𝑅ℱ maps to 0 everything that we can derive in PCR,

• moreover if ℱ is satisfiable then 𝑅ℱ(1) = 1
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that give us the certificate that there is no PCR proofs of ℱ (of any degree). If ℱ is unsatisfiable we
want to mimic this operator up to degree 𝑑.

Theorem 4.18
Let ℱ be a system of polynomial equations. For any 𝑑 if there is a linear operator 𝑅 such that:

• 𝑅(𝑓) = 0 for all axioms 𝑓 ;

• 𝑅(1) = 1;

• 𝑅(𝑥𝑡) = 𝑅(𝑥𝑅(𝑡)) for all terms 𝑡 of degree at most 𝑑 − 1 and all variables 𝑥,

then there is no PCR proof of ℱ of degree 𝑑.

4.5.3 Separation with Resolution

Consider an undirected bipartite graph 𝐺 ≔ (𝑈, 𝑉 , 𝐸) where |𝑈| = 𝑛 + 1 and |𝑉 | = 𝑛. The Perfect
Matching Principle (aka functional onto-Pigeonhole Principle) PMP𝐺 on variables 𝑥𝑢,𝑣 where (𝑢, 𝑣) ∈ 𝐸
consists of the following clauses:

• for all 𝑤 ∈ 𝑈 ∪ 𝑉 : ⋁
𝑢∈N(𝑤)

𝑥𝑤,𝑢;

• for all 𝑤 ∈ 𝑈 ∪ 𝑉 and all 𝑢, 𝑣 such that (𝑤, 𝑢), (𝑤, 𝑣) ∈ 𝐸: ¬𝑥𝑤,𝑢 ∨ 𝑥𝑤,𝑣.

Problem 4.11 Let 𝐺 be a constant degree graph. Show that for any field F there is PCRF-proof of
PMP𝐺 of size poly(𝑛).

Harder version of previous problem.
Problem 4.12 Let 𝐺 be an arbitrary graph. Show that for any field F there is PCRF-proof of PMP𝐺
of size poly(𝑛).

The solution of the following problem is known in the literature, but maybe it is good problem to
think about. The problem is tricky since it does not fit into presented framework.
Problem 4.13 Show that there is a graph 𝐺 such that any resolution proof of PMP𝐺 has size 2𝑛𝜀 for
some 𝜀 (in fact 𝜀 = 1).

4.6 Research Problems

Disclaimer! The following research problems have some history of success and failures, consult with
your advisor for the right choice.
Problem 4.14 Weak PHP and resolution. Let 𝑚 = 2𝑛. What is the size of the optimal resolution proof
of PHP𝑚

𝑛 ?

Problem 4.15 Weak PHP and PCRF. What is the size of the optimal PCRF proof of PHP𝑛3
𝑛 ?

A linear clause is a disjunction of linear equalities
𝑘
⋁

𝑖=1
(𝑓𝑖 = 𝛼𝑖), where 𝑓𝑖 is a linear form and

𝛼𝑖 ∈ F2. Equivalently we may rewrite a linear clause as the negation of a system of linear equalities

¬
𝑛
⋀

𝑖=1
(𝑓𝑖 = 1 + 𝛼𝑖). A linear CNF formula is a conjunction of linear clauses. We say that propositional

formula 𝜑 is semantically implied by the set of formulas 𝜓1, 𝜓2, … , 𝜓𝑘 if every assignment that satisfies
𝜓𝑖 for all 𝑖 ∈ [𝑘] also satisfies 𝜑.
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We define a proof system Res(⊕) that can be used to prove that a linear CNF formula is unsatisfi-
able. This system has two rules:

• the weakening rule: allows to derive from a linear clause 𝐶 any linear clause 𝐷 such that 𝐶
semantically implies 𝐷;

• the resolution rule: allows to derive from linear clauses (𝑓 = 0) ∨ 𝐷 and (𝑓 = 1) ∨ 𝐷′ the linear
clause 𝐷 ∨ 𝐷′.

A derivation of a linear clause 𝐶 from a linear CNF 𝜑 in the Res(⊕) system is a sequence of linear
clauses that ends with 𝐶 and every clause is either a clause of 𝜑 or it may be obtained from previous
clauses by a derivation rule. The proof of the unsatisfiability of a linear CNF is a derivation of the
empty clause (contradiction).
Problem 4.16 Res(⊕). Give any superpolynomial lower bound on the size of Res(⊕) proofs.

Consider some set of polynomial equations and inequalities ℱ ≔ {𝑝1 = 0, 𝑝2 = 0, … , 𝑝𝑚 =
0; 𝑟1 ≥ 0, 𝑟2 ≥ 0, … , 𝑟ℓ > 0} over the real field and over variables 𝑥1, … , 𝑥𝑛, and we require that ℱ
include, for each 𝑖 ∈ [𝑛], axioms 𝑥2

𝑖 − 𝑥𝑖 = 0, ̄𝑥2
𝑖 − ̄𝑥𝑖 = 0, 𝑥𝑖 + ̄𝑥𝑖 − 1 = 0, and also the axiom 1 ≥ 0.

A Sum-of-squares (SOS) proof of 𝑟 ≥ 0 from ℱ is a set of polynomials {𝑞1, … , 𝑞𝑚; 𝑠1, … , 𝑠ℓ) ∈
R[𝑥1, … , 𝑥𝑛, ̄𝑥1, … , ̄𝑥𝑛] such that

∑
𝑗∈[𝑚]

𝑞𝑗𝑝𝑗 + ∑
𝑗∈[ℓ]

𝑠𝑗𝑟𝑗 = 𝑟,

where each 𝑠𝑗 is a positive linear combination of squared polynomials, that is, 𝑠𝑗 can be written as
𝑠𝑗 = ∑

𝑖
𝛼𝑗,𝑖𝑞2

𝑗,𝑖 for some 𝛼𝑗,𝑖’s that are positive real numbers and 𝑞𝑗,𝑖’s that are polynomials. Under

the assumption that all polynomial equations and inequalities in ℱ are satisfied, the summands 𝑞𝑖𝑝𝑗
are equal to zero and the summands 𝑠𝑗𝑟𝑗 are nonnegative; hence, 𝑟 ≥ 0.
Problem 4.17 Non-automatizability. Let ℱ encodes a satisfiability of some CNF formula 𝜑. How
hard to algorithmically find the shortest (or approximately shortest) SOS proof of this system?

Problem 4.18 SOS size/degree. Is there any CNF formula such that has a short SOS proof, but any
SOS proof of it has a large degree?

Problem 4.19 Dag-like communication. Show lower bounds for dag-like protocols for KWm where
instead of rectangles we can use more complicated structures.

5 Fine-grained complexity

5.1 Central problems and conjectures

Definition 5.1 (Fine-grained reduction)

(𝑇1, 𝑇2) fine-grained reduction, where 𝑇1, 𝑇2 are function 𝑁 → 𝑁 from problem 𝑃 to 𝑄 is an
𝐴 algorithm that solves problem 𝐴 given oracle to problem 𝐵 such that:

• Time complexity of 𝐴 on inputs of size 𝑛 is 𝑂(𝑇1(𝑛)1−𝛼 for some 𝛼.

• For every 𝛿 > 0 There exists an 𝜖 > 0 such that for any computational path of 𝐴 on
inputs of size 𝑛 sizes of the oracle calls 𝑆1, … , 𝑆𝑘 satisfy the following condition:

𝑘
∑
𝑖=1

𝑇2(𝑆𝑖)1−𝛿 ≤ 𝑇1(𝑛)1−𝜖
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Definition 5.2 (3-SUM)

Given lists 𝐴, 𝐵, 𝐶 of 𝑛 integers. Is there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0?

Definition 5.3 (All pairs shortest path)

Given a weighted graph 𝐺 on 𝑛 vertices. Return an 𝑛 × 𝑛 matrix 𝑀 , such that 𝑀[𝑎, 𝑏] is equal
to the weight of the lightest path from vertex 𝑎 to 𝑏.

Definition 5.4 (𝑘-SAT)
Given a 𝑘-CNF formula 𝜙 on 𝑛 variables. Is there an assignment to the variables that satisfies
𝜙?

Definition 5.5 (Orthogonal vectors problem)

Given two sets of size 𝑛 of vectors 𝐴, 𝐵 ∈ {0, 1}𝑚. Are there vectors 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that
∑𝑖∈[𝑚] 𝑎𝑖𝑏𝑖 = 0.

Conjecture 5.6 (3-SUM conjecture)

There is no 𝑛2−𝜀 algorithm for 3-SUM for any 𝜖.

Conjecture 5.7 (APSP conjecture)

There is no 𝑛3−𝜀 algorithm for APSP for any 𝜖.

Conjecture 5.8 (Exponential time hypothesis)

There is no algorithm that solves 𝑘-SAT in time 2𝑜(𝑛) for any 𝑘.

Conjecture 5.9 (Strong exponential time hypothesis)

There is no 𝜀 > 0 such that 𝑘-SAT can be solved in time 2(1−𝜀)𝑛 for any 𝑘.

Conjecture 5.10 (Nondeterministic strong exponential time hypothesis)

There is no 𝜀 > 0 such that 𝑘-SAT can be solved in time 2(1−𝜀)𝑛 co-nondeterministically for any
𝑘.

Conjecture 5.11 (Orthogonal vectors conjecture)

There is no 𝑛2−𝜀 algorithm for OV with 𝑚 = 𝑂(log𝑛) for any 𝜖.

5.2 Problems and lower bounds

Definition 5.12 (3 points on a line)

Given 𝑛 points on 2 dimensional plane. Is there a line that goes through 3 given points?
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Definition 5.13 (Min-plus matrix product)

Given 𝑛 × 𝑛 matrices 𝐴, 𝐵. Return an 𝑛 × 𝑛 matrix 𝐶 , such that:

∀𝑖, 𝑗 ∈ [𝑛]: 𝐶[𝑖, 𝑗] = min
𝑘∈[𝑛]

𝐴[𝑖, 𝑘] + 𝐵[𝑘, 𝑗]

Definition 5.14 (Negative-weight triangle)

Given a weighted graph 𝐺. Is there a triangle with negative weight.

Definition 5.15 (Zero-weight triangle)

Given a weighted graph 𝐺. Is there a triangle with weight exactly 0?

Definition 5.16 (𝑘-Dominating set)

Given a graph 𝐺. Is there a dominating set of size 𝑘?

Definition 5.17 (3-coloring)
Given a graph 𝐺. Is chromatic number of 𝐺 at most 3?

5.3 Lower bounds

In the following table we have a list of problems with a time complexity and list of conjectures that
would be false if algorithm with such complexity existed for such problem:

3-SUM 𝑛2−𝜀 3-SUM conj.
APSP 𝑛3−𝜀 APSP conj.
𝑘-SAT 2(1−𝜀)𝑛 SETH
𝑘-SAT 2𝑜(𝑛) ETH
OV 𝑛2−𝜀 SETH, OV conj.

Zero weight triangle 𝑛3−𝜀 3-SUM, APSP
3-points on a line 𝑛2−𝜀 3-SUM
𝑘-Dominating set 𝑛𝑘−𝜀 SETH

3-Coloring 2𝑜(𝑛) ETH

5.4 Other theorems

Theorem 5.18

If there is (2𝑛, 𝑛2) fine-grained reduction from 𝑘-SAT to 3-SUM then NSETH is false.

Theorem 5.19

If there is (2𝑛, 𝑛3) fine-grained reduction from 𝑘-SAT to APSP then NSETH is false.

Theorem 5.20

If ETH is false then ENP is not computable by linear size circuits.
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5.5 Problems

Problem 5.1 Show that if 3-SUM, where all integers are bounded by𝑛4 can be solved by a randomized
algorithm with complexity 𝑛2−𝜀, then 3-SUM also can be solved in time 𝑛2−𝜀+𝑜(1).

Problem 5.2 Show that Min-plus product of matrices where all the integers in matrices are non-
negative and no more than 𝑡 could be solved in time 𝑂(𝑡2𝑛𝜔).
Problem 5.3 Show that Min-plus product of matrices where all the integers in matrices are non-
negative and no more than 𝑡 could be solved in time 𝑂(𝑡𝑛𝜔).
Problem 5.4 Prove that Zero-weight triangle does not have an 𝑛3−𝜀 algorithm under 3-SUM conjec-
ture by providing a fine-grained reduction from Convolution 3-SUM to Zero-weight triangle.

Problem 5.5 Show that 𝑘-Domination sets can be solved in time 𝑛𝑘−1+𝑜(1) on graphs with average
degree 𝑑 = 𝑜(𝑛). Show that under SETH there is no algorithm for this problem with time complexity
𝑛𝑘−1−𝜀.
Problem 5.6 Show that under NSETH there is no 2𝑛, 𝑛2 fine-grained reduction from 𝑘-SAT to Max
flow.
Problem 5.7 Show that under NSETH there is no (2𝑛, 𝑛3) fine-grained reduction from 𝑘-SAT to
Min-plus matrix product.

Problem 5.8 Show that if there is a co-nondetermenistic algorithm for 𝑘-SAT for all 𝑘 with running
time 2𝑜(𝑛) then ENP is not computable by linear size circuits.
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A More on Expanders

The next proposition is well known in the literature. In this form it was used in [GMT09].

Proposition A.1

If 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-boundary expander then for any set 𝑆 ⊆ 𝐿 of size 𝑘 ≤ 𝑟 there
is an enumeration 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑆 and a sequence 𝑅1, … , 𝑅𝑘 ⊆ N(𝑆) such that:

• 𝑅𝑖 = N(𝑣𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N(𝑣𝑗));

• |𝑅𝑖| ≥ 𝑐.

In particular, there is a matching on the set 𝑆.

Proof. We create this sequence in reversed order. Since |𝑆| ≤ 𝑟 it holds that |𝜕𝑆| ≥ 𝑐|𝑆| and there
is a vertex 𝑣𝑘 ∈ 𝑆 such that |𝜕𝑆 ∩ N(𝑣𝑘)| ≥ 𝑐. Let 𝑅𝑘 ≔ |𝜕𝑆 ∩ N(𝑣𝑘)|, and repeat the process on
𝑆 ⧵ {𝑣𝑘}.

Lemma A.2

Suppose that 𝐺 is an (𝑟, Δ, 𝑐)-boundary expander and that 𝐽 ⊆ 𝑅 has size |𝐽 | ≤ Δ𝑟. Then
|Cl𝑟,𝜈(𝐽)| < |𝐽|

𝑐−𝜈 .

Proof. By definition we have that |𝜕Cl𝑟,𝜈(𝐽)⧵𝐽| < 𝜈|Cl𝑟,𝜈(𝐽)|. Since |Cl𝑟,𝜈(𝐽)| ≤ 𝑟 by definition, the
expansion property of the graph guarantees that 𝑐|Cl𝑟,𝜈(𝐽)| − |𝐽| ≤ |𝜕Cl𝑟,𝜈(𝐽) ⧵ 𝐽|. The conclusion
follows.

Lemma A.3

Let 𝐽 ⊆ 𝑅 be such that |𝐽 | ≤ Δ𝑟 and |Cl𝑟,𝜈(𝐽)| ≤ 𝑟
2 and let 𝐺′ ≔ 𝐺 ⧵ (Cl𝑟,𝜈(𝐽) ∪ 𝐽 ∪

N(Cl𝑟,𝜈(𝐽))). Then any set 𝑆 of vertices from the left side of 𝐺′, with size |𝑆| ≤ 𝑟
2 , satisfies

that |𝜕𝐺′𝑆| ≥ 𝜈|𝑆|.

Proof. Suppose the set 𝑆 ⊆ 𝐿(𝐺′) violates the boundary expansion guarantee. Observe that Cl𝑟,𝜈(𝐽)
and 𝑆 are both sets of size at most 𝑟

2 . Furthermore, the set (Cl𝑟,𝜈(𝐽) ∪ 𝑆) is (𝐽, 𝑟, 𝜈)-contained in the
graph 𝐺. As Cl𝑟,𝜈(𝐽) is a (𝐽, 𝑟, 𝜈)-contained set of maximal cardinality, this leads to a contradiction.
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