
Некоторые задачи теории риска и их применение к моделям
страхового регулирования

Исходным пунктом доклада являются исследования математических моделей пла-
нирования работы компаний, ведущих свой бизнес на конкурентном и регулируемом
страховом рынке ([1], [2]). В них делается акцент на ценовой конкуренции, приводя-
щей к миграции страхователей и к возможности возникновения страховых циклов,
чреватых кризисами. При моделировании учитывается, что компании преследуют
различные стратегические цели. Они меняются со временем, в зависимости от фи-
нансового положения компании и от состояния рынка. Связанные друг с другом,
такие модели дают единую, интегральную модель долгосрочного управления компа-
нией и ряд рекомендаций по регулированию работы как отдельных компаний, так и
страхового рынка в целом.

Эти исследования привели к необходимости обратиться к вероятности разоре-
ния в традиционной модели теории риска. Для нее получено новое приближение в
терминах обратного гауссовского распределения ([3]).

Вероятность разорения является характеристикой, выраженной в абсолютных, а
не в денежных единицах. В практических приложениях удобнее использовать капи-
тал неразорения, обеспечивающий для вероятности неразорения за конечное время
заранее заданное значение. Это приводит к необходимости критического исследо-
вания используемых ныне мер риска (в том числе “Value-at-Risk”) и рассматривать
задачу, обратную к задаче о пересечении границы, с этих позиций. Для капитала нера-
зорения в традиционной модели теории риска получены новые приближения ([4]).
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Часть 1: введение (кн. [1], [2])
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A typical dynamics of the underwriting cycle is the alternation of the two waves, one
of which consists of a number of years of “hard”, or profitable market, and the other — of
a number of years of “soft”, or unprofitable market. Themselves, these waves are divided
into the following quarters:

Quarter FH (Falling hard market) The annual market prices Π[k], k = 1, 2, . . . , are such
that Π[1] < Π[2] < Π[3] < · · · < EY , where EY is the marginal cost of insurance

Quarter FS (Falling soft market) The annual market prices Π[k], k = 1, 2, . . . , are such
that EY < Π[1] < Π[2] < Π[3] < · · · .

Quarter RS (Rising soft market) The annual market prices Π[k], k = 1, 2, . . . , are such
that Π[1] 4 Π[2] 4 Π[3] 4 · · · 4 EY .

Quarter RH (Rising hard market) The annual market prices Π[k], k = 1, 2, . . . , are such
that EY 4 Π[1] 4 Π[2] 4 Π[3] 4 · · · .

Assessment of financial position of a company in one year:

• Expansion

• Revenue

• Solvency



3

Часть 2 (кн. [3])
We denote the probability density function (p.d.f.) and cumulative distribution function

(c.d.f.) of a standard Gaussian distribution by

ϕ(0,1)(x) :=
1√
2π

e−
x2
2 , Φ(0,1)(x) :=

∫ x

−∞
ϕ(0,1)(z) dz, x ∈ R,

respectively.

Definition 1. The compound renewal process with time s > 0 is

Vs :=
Ns∑

i=1

Yi, (1)

or 0, if T1 > s, where summation is up to the random variable

Ns := max
{

n > 0 :
n∑

i=1

Ti 6 s

}
, (2)

with Ns := 0, if T1 > s.

Plainly, the trajectories of the point process Vs, s > 0, and of its special case Ns,
s > 0, called renewal process, are piecewise linear.

If all random variables Ti, i = 1, 2, . . . , are identically distributed, the renewal process
Ns, s > 0, is called ordinary. If fT1(x) and fT (x) are not the same, this process is called
modified renewal process. If fT1(x) has the special form fT1(x) := 1

ET (1 − FT (x)), where
FT (x) is the cumulative distribution function (c.d.f.) corresponding to fT (x), then this
process is called equilibrium (or stationary) renewal process.

By shifted compound renewal process, we refer to as Vs − cs, s > 0, where the
underlying compound renewal process Vs, s > 0, is defined in (1) and c > 0 is a constant.
We write

Υ [ren]
u,c := inf

{
s > 0 : Vs − cs > u

}
, (3)

or +∞, if Vs − cs 6 u for all s > 0. It is the first level-crossing time, or the first passage
time to the level u > 0.

By the level-crossing problem in renewal framework, we mean an investigation of the
r.v. Υ [ren]

u,c defined in (3). This is the first time moment, when the shifted compound renewal
process Vs−cs, s > 0, crosses the horizontal level u for the first time. Plainly, this problem
can be reformulated in terms of the original compound renewal process Vs, s > 0. To do
this, we need to make trivial changes in (3), i.e., write it as Υ [ren]

u,c := inf{s > 0 : Vs >
u + cs}, which means that we are focussed on a linearly growing, rather than horizontal,
level.

Cramérian approximation. We denote by MX(r) := E erX the moment generating
function (m.g.f.) of X. Plainly, we have MX(0) = 1. Let us consider the nonlinear equation
(w.r.t. r > 0)

MX(r) = 1 (4)
and assume that a solution κ > 0 to equation (4) exists1. This is a substantial restriction
on the model which implies that MX(r) has to exist in a neighborhood of 0, and that
the right tail of FX is bounded above exponentially. The latter follows from Markov’s
inequality

1− FX(x) 6 e−κx E eκX = e−κx, x > 0.

1In the risk theory, equation (4) is called Lundberg’s equation. Its positive solution κ is called
Lundberg’s exponent, or adjustment coefficient. The assumption that it exists means that T , called
interclaim time, may be either light-tailed, or heavy-tailed, whereas Y , called claim amount, must be
light-tailed. This assumption is referred to as “small claim” condition.
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Рис. 1. Graph (X-axis is c) of P{Υ [ren]
u,c | δ,% 6 t} (solid line), which is

a monotone decreasing function calculated numerically, using Type II
formula (15), and the approximation of Theorem 2 (dash-dotted line),
when T and Y are exponentially distributed with parameters δ = 2 and
% = 1, respectively, and t = 200, u = 10. Horizontal line: P{Υ [ren]

u,c∗ | δ,% 6
t} = 0.699.

Starting with c.d.f. FXT (x, t) := P{X 6 x, T 6 t}, we proceed with the associated
joint distribution, whose c.d.f. FX̄T̄ (x, t) := P{X̄ 6 x, T̄ 6 t} is defined by the equality2

FX̄T̄ (x, t) =
∫ x

−ct

∫ t

0

eκz FXT (dz, dw). (5)

Plainly, this is a proper probability distribution.
For X̄i

d= X̄, i = 1, 2, . . . , and T̄i
d= T̄ , i = 1, 2, . . . , called associated random variables,

we introduce S̄n :=
∑n

i=1 X̄i, and Z̄n :=
∑n

i=1 T̄i, n = 1, 2, . . . , referred to as associated
random walks.

Theorem 1. Assume that a solution κ > 0 to equation (4) exists. For η̄(u) :=
min{n > 1 : S̄n > u }, or 0, if the random walk S̄n, n = 1, 2, . . . , which starts at the origin
(i.e., with S̄0 := 0), never crosses the level u > 0, we have

P{Υ [ren]
u,c 6 t} = E e−κ S̄η̄(u) 1(−∞,t](Z̄ η̄(u)). (6)

C = δ/(c%), κ = % (1− δ/(c%)),

mO = − 1
c (1− δ/(c%))

, D 2
O = − 2 (δ/(c%))

c2% (1− δ/(c%)) 3
,

mM =
(δ/(c%)

c (1− δ/(c%))
, D 2

M =
2 (δ/(c%))

c2% (1− δ/(c%)) 3
.

(7)

Theorem 2. In the renewal model, when T and Y are exponentially distributed with
parameters δ > 0 and % > 0, respectively, we have for 0 < c < c∗ = δ/%

sup
t>0

∣∣∣ P{Υ [ren]
u,c | δ,% 6 t} − Φ(mOu,D 2Ou)(t)

∣∣∣ = o(1), u →∞,

where mO > 0, D 2
O > 0 are defined in (7), and for c > c∗

sup
t>0

∣∣∣ eκu P{Υ [ren]
u,c | δ,% 6 t} − CΦ(mM u,D 2Mu)(t)

∣∣∣ = o(1), u →∞, (8)

where κ > 0, and 0 < C < 1, mM > 0, D 2
M > 0 are defined in (7).

2A shorthand for this, FX̄T̄ (dx, dt) = eκzFXT (dx, dt), is usually used.
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Exact expression based on Kendall’s identity. To separate T1 apart from the
rest3, we introduce the conditional probability4 P{v < Υ [ren]

u,c 6 t | T1 = v}, 0 < v < t, and
write

P{Υ [ren]
u,c 6 t} =

∫ t

0

P{u + cv − Y < 0} fT1(v) dv

+
∫ t

0

P{v < Υ [ren]
u,c 6 t | T1 = v} fT1(v) dv.

(9)

Let us introduce5

Mx := inf
{

k > 1 :
k∑

i=1

Yi > x

}
− 1, x > 0, (10)

which is a renewal process (cf. (2)) generated by the random variables Yi, i = 1, 2, . . . .
The following identity is paramount.

Theorem 3. For 0 < v < t, we have

P{v < Υ [ren]
u,c 6 t | T1 = v} =

∫ t

v

u + cv

u + cz
pPMu+cz+1

i=2 Ti
(z − v) dz

=
∫ t

v

u + cv

u + cz

∞∑
n=1

P{Mu+cz = n} f∗nT (z − v) dz.

(11)

Bearing in mind that Yi, i = 1, 2, . . . , are i.i.d., we have

P{Mu+cv+cy = n} = P

{ n∑

i=1

Yi 6 u + cv + cy <

n+1∑

i=1

Yi

}

=
∫ u+cv+cy

0

f∗nY (u + cv + cy − z)P{Yn+1 > z} dz.

Making the change of variables y = z − v in (11), we rewrite it as

P{v < Υ [ren]
u,c 6 t | T1 = v} =

∞∑
n=1

∫ t−v

0

u + cv

u + cv + cy

×
∫ u+cv+cy

0

P{Yn+1 > z}
× f∗nY (u + cv + cy − z) f∗nT (y) dy dz,

(12)

where f∗nT and f∗nY are n-fold convolutions of p.d.f. fT and fY .

Exact formulas in Poisson–Exponential case.

Theorem 4. In the renewal model satisfying the standard assumptions, with T and
Y exponentially distributed with parameters δ and %, respectively, for 0 < v < t we have

P{v < Υ [ren]
u,c | δ,% 6 t | T1 = v} =

√
%δc (v + u/c) e−%ue−c%v

×
∫ t−v

0

I1(2
√

%δc(y + v + u/c)y )√
(y + v + u/c)y

× e−(c%+δ)y dy.

(13)

3When T1
d
= T is assumed, we restrict ourselves to the ordinary renewal process Ns, s > 0.

4Dealing with it, we are in the situation when at least one renewal occurs before time t.
5The inf-definition for Mx, x > 0, in contrast to max-definition (see (2)) for Ns, s > 0, is used here

as a hint on the difference between these renewal processes.
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Theorem 5 (Type I formula). In the renewal model satisfying the standard assumptions,
with T and Y exponentially distributed with positive parameters δ and %, we have

P{Υ [ren]
u,c | δ,% 6 t} = e−u%δ

∫ t

0

e−(%c+δ)x
(
I0(2

√
δ%x (cx + u) )

− cx

cx + u
I2(2

√
δ%x (cx + u) )

)
dx.

(14)

Theorem 6 (Type II formula). In the renewal model satisfying the standard assumptions,
with T and Y exponentially distributed with positive parameters δ and %, we have

P{Υ [ren]
u,c | δ,% 6 t} = e−u%

√
δ√
c%

∫ c%t

0

e−(1+δ/(c%))x
∞∑

n=0

un

n!

(
δ%

c

)n/2

× n + 1
x

In+1(2x
√

δ/(c%) ) dx.

(15)

Theorem 7 (Type III formula). In the renewal model satisfying the standard assumptions,
with T and Y exponentially distributed with positive parameters δ and %, we have

P{Υ [ren]
u,c | δ,% 6 t} = P{Υ [ren]

u,c | δ,% < ∞}− 1
π

∫ π

0

f(x, u, t) dx, (16)

where

P{Υ [ren]
u,c | δ,% < ∞} =





δ

c%
exp{−u(c%− δ)/c}, δ/(c%) < 1,

1, δ/(c%) > 1,

and
f(x, u, t) = (δ/(c%))(1 + δ/(c%)− 2

√
δ/(c%) cos x)−1

× exp
{

u% (
√

δ/(c%) cos x− 1)

− tδ(c%/δ)(1 + δ/(c%)− 2
√

δ/(c%) cos x)
}

× (cos(u%
√

δ/(c%) sin x)− cos(u%
√

δ/(c%) sin x + 2x)).

Inverse Gaussian Distribution. With the usual parametrization, p.d.f. of inverse
Gaussian distribution is

f(x;µ, λ,− 1
2 ) :=

λ1/2

√
2π

x−3/2 exp
{
− λ (x− µ)2

2µ 2x

}

= λ1/2x−3/2 ϕ(0,1)

(√
λ

x

(
x

µ
− 1

))
, x > 0.

(17)

The parameters µ > 0 and λ > 0 are called mean and shape parameters, respectively. The
shape of p.d.f. f(x;µ, λ,− 1

2 ), as λ is fixed and µ grows, and as µ is fixed and λ grows, is
illustrated in Fig. 2.

Obviously, the inverse Gaussian distribution concentrated on the positive half-line is
not similar to the Gaussian distribution concentrated on the whole real line. But c.d.f. of
the former,

F (x;µ, λ,− 1
2 ) :=

∫ x

0

f(z; µ, λ,− 1
2 ) dz, x > 0, (18)

can be expressed through c.d.f. of the latter. Let us express (18) first in terms of c.d.f. of
a standard Gaussian distribution, and then in an equivalent form, i.e., in terms of Mills’
ratio and p.d.f. of a standard Gaussian distribution.
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Рис. 2. Graphs (X-axis is x) of p.d.f. f(x;µ, λ,− 1
2 ) with (above) shape

parameter λ = 10 and eight values of mean parameter: µ = 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, and 2.0 and (below) with mean parameter µ = 1.3 and
twelve values of shape parameter: λ = 1.0, 1.3, 1.6, 2.0, 3.0, 4.0, 5.0, 6.0,
7.0, 8.0, 9.0, and 10.0.

Theorem 8. The cumulative distribution function of inverse Gaussian distribution
with parameters µ > 0 and λ > 0 is

F (x;µ, λ,− 1
2 ) = Φ(0,1)

(√
λ

x

(
x

µ
− 1

))

+ exp
{

2λ

µ

}
Φ(0,1)

(
−

√
λ

x

(
x

µ
+ 1

))
, x > 0.

(19)

Inverse Gaussian Approximation. The aim of this chapter, which is the nub of
the book, is to get the inverse Gaussian approximation

P{Υ [ren]
u,c 6 t} ≈ Mu,c(t), u, t →∞, (20)

where Υ [ren]
u,c is defined in (3). This approximation is referred to as inverse Gaussian because

of the approximating expression in (20), which is

Mu,c(t) :=
∫ ct

u

0

1
x + 1

ϕ“
cM(x+1), c2D2

u (x+1)
”(x) dx,



8

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Рис. 3. Graphs (X-axis is t) of P{v < Υ [ren]
u,c | δ,% 6 t | T1 = v} (solid

line), calculated numerically, using formula (13), and Mu,c(t | v) (dash-
dotted line), when T and Y are exponentially distributed with parameters
δ = % = 1 (whence c∗ = 1), and v = 0, u = 10, c = 0.9.
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Рис. 4. Graphs (X-axis is c) of P{Υ [ren]
u,c | δ,% 6 t} (solid line), calculated

numerically, using formula (14), and Mu,c(t) (dash-dotted line), when T
and Y are exponentially distributed with parameters δ = 2.1 and % = 1.25,
respectively, and t = 800, u = 40. Vertical grid line is c∗ = δ/% = 1.68.

where M := ET/EY , D 2 := ((ET )2DY + (EY )2DT )/(EY )3. It may be written in terms of
c.d.f. of inverse Gaussian distribution, as follows:

Mu,c(t) =





(
F (x + 1; µ, λ,− 1

2 )

−F (1; µ, λ,− 1
2 )

)∣∣∣
x= ct

u ,µ= 1
1−cM ,λ= u

c2D2

, 0 < c < c∗ := M−1,

exp
{
− 2λ

µ̂

} (
F (x + 1; µ̂, λ,− 1

2 )

−F (1; µ̂, λ,− 1
2 )

)∣∣∣
x= ct

u ,µ̂= 1
cM−1 ,λ= u

c2D2

, c > c∗.

For c > 0, u > 0, 0 < v < t, c∗ := EY/ET , and for

M := ET/EY, D 2 := ((ET )2DY + (EY )2DT )/(EY )3, (21)

we write

Mu,c(t | v) :=
∫ c(t−v)

u+cv

0

1
x + 1

ϕ“
cM(x+1), c2D 2

u+cv (x+1)
”(x) dx.
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Рис. 5. Graphs (X-axis is c) of numerically evaluated P{Υ [ren]
u,c 6 t}

(smooth solid line), of the approximations of Proposition 2 (non-smooth
solid line), and simulated values (∆c = 0.05, N = 1000) of P{Υ [ren]

u,c 6
t} (dots), when T and Y are exponentially distributed with parameters
% = 1, δ = 1, respectively, and t = 1000, u = 50. Horizontal grid line:
P{Υ [ren]

u,c∗ 6 t} = 0.26.
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Рис. 6. Graphs (X-axis is c) of numerically evaluated P{Υ [ren]
u,c 6 t}

(solid line), of Mu,c(t) (dash-dotted line), and simulated values (∆c =
0.05, N = 1000) of P{Υ [ren]

u,c 6 t}, when T and Y are exponentially
distributed with parameters δ = 1, % = 1, respectively, and t = 1000,
u = 50. Horizontal grid line: P{Υ [ren]

u,c∗ 6 t} = 0.26.

Theorem 9. In the renewal model, let p.d.f. fT and fY be bounded above by a finite
constant, D 2 > 0, E(T 3) < ∞, E(Y 3) < ∞. Then for any fixed c > 0 and 0 < v < t, we
have

sup
t>v

∣∣ P{v < Υ [ren]
u,c 6 t | T1 = v} −Mu,c(t | v)

∣∣ = O

(
ln(u + cv)

u + cv

)
, (22)

as6 u + cv →∞.

Часть 3 (кн. [4])
In the models (a)–(c), the risk reserve process, which is a difference of incoming

premiums and outgoing claims, is defined as

Rs = u + cs− Vs, s > 0, (23)

where u > 0 is the initial capital, or the initial risk reserve, c > 0 is the premium intensity,
called for brevity price,

Vs =
Ns∑

i=1

Yi, (24)

6With c and v fixed, u + cv →∞ is trivially equivalent to u →∞.
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Рис. 7. Graph (X-axis is c) of numerically evaluatedMu,c(t) (solid line)
and simulated values (∆c = 0.05, N = 1000) of P{Υ [ren]

u,c 6 t} (dots), when
T is 2-mixture and Y is Pareto (see details in Table 1) t = 1000, u = 40.

or 0, if Ns = 0 (or T1 > s), is the aggregate claim payout process, and

Ns = max
{

n > 0 :
n∑

i=1

Ti 6 s

}
, (25)

or 0, if T1 > s, is the claim arrival process.

Definition 2 (Non-loss capital). The non-loss capital uα,t(c), c > 0, is a positive
solution to the equation (w.r.t. u)

P{Vt − ct 6 u} = 1− α. (26)

We set uα,t(c) equal to zero for those c, for which this solution is negative.

Definition 3 (Non-ruin capital). The non-ruin capital uα,t(c), c > 0, is a positive
solution to the equation (w.r.t. u)

P
{

sup
06s6t

(Vs − cs) 6 u
}

= 1− α. (27)

We set uα,t(c) equal to zero for those c, for which this solution is negative.

In risk theory, common is to write (27) as

P
{

inf
06s6t

Rs < 0
}

= α, (28)

in terms of the risk reserve process (23). Plainly, the left-hand side of (28) is the probability
of ruin within time t. Using (28), the origin of the term “non-ruin capital” is straightforward:
if uα,t(c) is chosen to be the initial capital in the expression (23) for the risk reserve, then
the probability of ruin ψt(u, c) is equal to α.

Bounds on non-ruin capital, when 0 6 c 6 c∗. We start with the following
bilateral bounds, when 0 6 c 6 c∗:

(c∗ − c) t +
D

M 3/2
κα

√
t (1 + o(1)) 6 uα,t(c)

6 (c∗ − c) t +
D

M 3/2
κα/2

√
t (1 + o(1)), t →∞.

(29)

Bounds on non-ruin capital, when c > c∗. We proceed with the upper bounds,
when c > c∗. In this case, sensible is to start with uα(c), c > c∗, which yields an accurate
upper bound, when c is much larger than c∗, and a very inaccurate upper bound, when c∗

is a little less than c. We further correct this bound, balancing precision and complexity,
and get a number of upper bounds for all c > c∗. Finally, we compare these bounds with
the simulated values of uα,t(c), c > c∗.
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Рис. 8. Graph (X-axis is c) of numerically evaluatedMu,c(t) (solid line)
and simulated values (∆c = 0.05, N = 1000) of P{Υ [ren]

u,c 6 t} (dots), when
T is Erlang and Y is Pareto (see details in Table 1), t = 1000, u = 40.
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Рис. 9. Graph (X-axis is c) of numerically evaluatedMu,c(t) (solid line)
and simulated values (∆c = 0.05, N = 1000) of P{Υ [ren]

u,c 6 t} (dots), when
T and Y are Pareto (see details in Table 1), t = 1000, u = 40.

Таблица 1. Models in Figs. 6–9

inter-claim interval T claim amount Y M D 2

Fig. 6: exponentially exponentially
distributed; δ = 1 distributed; % = 1 1 2

Fig. 7: 2-mixture; δ1 = 1, Pareto; aY = 4.0,
δ2 = 2, p = 2/3 bY = 0.35 0.88 2.30

Fig. 8: Erlang; δ = 6.0, Pareto; aY = 4.0,
k = 4 bY = 0.4 0.8 1.2

Fig. 9: Pareto; aT = 4.0, Pareto; aY = 4.0,
bT = 0.4 bY = 0.4 1 1.33

Seeking for more or less elementary, but accurate, upper bounds for uα,t(c), c > c∗, we
focus first on its natural upper bound uα(c), c > c∗. The latter is a solution to equation

P{Υ [ren]
u,c < ∞} = α,

where Υ [ren]
u,c := inf{s > 0 : Vs − cs > u}.

The left-hand side of this equation is the well-studied probability of ultimate ruin7.
Following the theory developed for P{Υ [ren]

u,c < ∞}, when c > c∗, we focus on the following
particular models.

7We recall that ψ∞(u, c) := P{Υ [ren]
u,c < ∞}, or ψ∞(u, c) := P{infs>0 Rs < 0}.
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Рис. 10. Graphs (X-axis is c) of two-sided bounds (29), when 0 6 c 6 c∗,
upper bound, when c > c∗, and simulated values of uα,t(c) (dots) in
Model (D), Example (b ), i.e., for T Erlang with parameters δ = 8/5,
k = 2, and Y exponentially distributed with parameter % = 3/5, α = 0.05,
t = 200. Vertical grid line: c∗ = 4/3. Horizontal grid line: uα,t(c∗) = 48.
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Рис. 11. Graphs (X-axis is c) of upper bound (29), when 0 6 c 6 c∗,
upper bound (31), when c > c∗, and simulated values of uα,t(c) (dots) in
Model (A), i.e., for T and Y exponentially distributed with parameters
δ = 3/5, % = 4/5, respectively, and α = 0.05, t = 200. Vertical grid line:
c∗ = 4/3. Horizontal grid line: uα,t(c∗) = 59.90.

Model (A): compound Poisson model, when Y is exponentially distributed,
Model (B): compound Poisson model, when distribution of Y is light-tailed (but not

exponential),
Model (C): compound Poisson model, when distribution of Y is fat-tailed,
Model (D): renewal (but not compound Poisson) model, when Y is exponentially

distributed,
Model (E): renewal (but not compound Poisson) model, when distribution of Y is

light-tailed (but not exponential),
Model (F): renewal (but not compound Poisson) model, when the distribution of Y

is fat-tailed.

Model (A). This model is verbally described as a model with generic inter-claim
interval T and claim size Y both exponentially distributed, with positive parameters δ
and %, respectively. The assumption on T can be also formulated as that claims arrival
process is Poisson, with intensity δ.

By elementary calculations, we have c∗ = δ/%, M = %/δ, D 2 = 2 %/δ 2. The adjustment
coefficient, or Lundberg’s exponent, is κ = %− δ/c.
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When c > δ/%, we have

P{Υ [ren]
u,c < ∞} = (1− κ/%) e−κ u, c > δ/%,

for all u > 0. This can be rewritten as8

P{Υ [ren]
u,c < ∞} = (δ/(c%)) exp{−(%− δ/c)u}, c > δ/%, (30)

for all u > 0, and by elementary calculations we have

uα,t(c) 6 max
{

0,− ln(αc%/δ)
%− δ/c

}
, c > δ/%, (31)

which is an upper bound that satisfies our needs.
In Fig. 11, the upper bounds (29) in the case 0 6 c 6 δ/%, and (31) in the case c > δ/%,

are drawn for t = 200, α = 0.05, δ = 4/5, % = 3/5, whence c∗ = 1.3333, M = 0.75, and
D 2 = 1.875. By dots are shown the simulated values of uα,t(c).

Note that in Fig. 11 a bound slightly to the right of the point c∗ = δ/% is shown as a
horizontal line at the level uα,t(c∗) = 59.9033, up to its intersection with uα(c), c > δ/%.
This is a justified upper bound on uα,t(c), which is obviously monotone decreasing, as c
increases. If we prove (which is uneasy) that uα,t(c) is convex9, then we would construct
more accurate bounds.

Let us make a remark concerning (see Proposition 2) the normal approximation, which
turns out to be useless for the above analysis. In Model (A), when c > c∗ = δ/%, we have

lim
u→∞

P{Υ [ren]
u,c < ∞} eκ u = C, (32)

where 0 < C = δ/(c%) < 1 and κ = %− δ/c > 0.
Nobody can deny that (32) is one of the most famous and best known results of risk

theory. This result holds not only in Model (A), but in much more general renewal risk
models. But the information on the asymptotic behavior of P{Υ [ren]

u,c < ∞}, as u → ∞,
is pointless in the study of uα,t(c), when c > Kc∗, K > 1, as above, because in this case
uα,t(c) is finite.

Model (B). This model is verbally described as a model with generic inter-claim
interval T exponentially distributed with parameter δ, and claim size Y whose distribution
is light-tail, but non-exponentially distributed, e.g.,
Example (a ): T is exponentially distributed and Y is 2-mixture,
Example (b ): T is exponentially distributed and Y is Erlang.
The assumption on T can be also formulated as that claims arrival process is Poisson,
with intensity δ.

Since c∗ = δ E Y , equation (4) can be rewritten as the equation (w.r.t. r) E exp{r Y } =
1+ c r/δ, whose positive solution κ is the adjustment coefficient, or Lundberg’s exponent.
When c > c∗, we have

P{Υ [ren]
u,c < ∞} 6 e−κ u, c > δ EY , (33)

for all u > 0. Therefore, by simple calculations we have

uα,t(c) 6 − ln α

κ
, c > δ E Y , (34)

and the problem reduces to finding κ in a closed form.
Let us make a remark concerning the balance between efficiency and simplicity. In

Model (A), to get the upper bound (31) for uα,t(c), c > δ/%, we used a closed-form
expression (30) for P{Υ [ren]

u,c < ∞}. In Model (B), which includes Model (A) as a special

8Recall that uα(c) is a solution to equation P{Υ [ren]
u,c < ∞} = α. In this case, this equation can be

rewritten as (δ/(c%)) exp{−(%− δ/c) u} = α.
9Convex functions are of the shape ^.
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Рис. 12. Graphs (X-axis is c) of two-sided bounds (29), when 0 6 c 6 c∗,
and simulated values of uα,t(c) in Model (C), Example (a ), i.e., for T
exponentially distributed with parameter δ = 4/5 and Y Pareto with
parameters aY = 10, bY = 0.05 (dots), aY = 3, bY = 0.3 (crosses), and
α = 0.05, t = 200. Vertical grid lines: c∗ = 1.78 (dots) and c∗ = 1.33
(crosses). Horizontal grid line: uα,t(c∗) = 80 (the same for dots and
crosses).

case, we used inequality (33): in this case there are no such accurate and simple-looking
results as (30). Consequently, the upper bound (34), which for Y exponentially distributed
with parameter % takes the form

uα,t(c) 6 − ln α

%− δ/c
, c > δ/%, (35)

is less accurate than (31). Thus, sacrificing accuracy for generality, we strive not to sacrifice
simplicity.

Model (C). This model is verbally described as a model with generic inter-claim
interval T exponentially distributed with parameter δ, and claim size Y whose distribution
is fat-tail, e.g.,
Example (a ): T is exponentially distributed and Y is Pareto,
Example (b ): T is exponentially distributed and Y is Kummer.
The assumption on T can be also formulated as that claims arrival process is Poisson,
with intensity δ.

In this case, we have no inequality like (33), but we have its substitutes of a rather
complex structure.

To set an example, let us focus on Model (C), Example (a ): T is exponentially
distributed with parameter δ > 0 and Y is Pareto with parameters aY > 0, bY > 0,
whose p.d.f. are

fT (x) = δ e−δ x, fY (x) =
aY bY

(x bY + 1)aY +1
, x > 0,

respectively. We can show by elementary calculations that

E T = 1/δ, D T = 1/δ 2,

EY = 1/((aY − 1) bY ), DY = aY /((aY − 1)2 (aY − 2) b2
Y ).

Plainly, c∗ = δ/((aY − 1) bY ),

M =
(aY − 1) bY

δ
, D 2 =

2 (aY − 1)2 bY

δ2 (aY − 2)
,

and the adjustment coefficient does not exist.
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Рис. 13. Graphs (X-axis is c) of two-sided bounds (29), when 0 6 c 6 c∗,
and simulated values of uα,t(c) in Model (C), Example (b ), i.e., for T
exponentially distributed with parameter δ = 4/5 and Y Kummer with
parameters kY = 5, lY = 5 (dots), kY = 200, lY = 200 (crosses), and α =
0.05, t = 200. Vertical grid line: c∗ = 1.33 (dots) and c∗ = 0.81 (crosses).
Horizontal grid lines: simulated uα,t(c∗) = 102 (dots) and uα,t(c∗) = 36
(crosses).

In Fig. 12, the upper and lower bounds (29) in the case 0 6 c 6 c∗ are drawn. By
dots, drawn are simulated values of uα,t(c), c > 0. We note that for aY = 3, bY = 0.3
(crosses), the third moment E(Y 3) is infinite, and the moment conditions may be relaxed.

To set another example, let us focus on Model (C), Example (b ): T is exponentially
distributed with parameter δ > 0 and Y is Kummer with parameters kY > 0, lY > 0,
whose p.d.f. are

fT (x) = δ e−δ x, fY (x) =
kY

2
Γ
(

kY +lY
2

)

Γ
(

kY

2

) U

(
1 +

lY
2

, 2− kY

2
,
kY

lY
x

)
, x > 0,

with U(a, b, z) = Γ(a)−1
∫∞
0

e−ztta−1(1+t)b−a−1 dt, respectively. We can show by elementary
calculations that

E(T k) =
k!
δk

, E(Y k) =
Γ
(

kY

2 + k
)
Γ
(

lY
2 − k

)

Γ
(

kY

2

)
Γ
(

lY
2

) l k
Y k−k

Y , 2k < lY , k = 1, 2, . . . .

In particular,
ET = 1/δ, DT = 1/δ 2,

E Y =
lY

lY − 2
, D Y =

l 2
Y ( 4( lY − 2) + kY lY )
kY ( lY − 2) 2( lY − 4)

.

Plainly, c∗ = δ lY /(lY − 2),

M =
lY − 2
δ lY

, D 2 =
2 (2 + kY )( lY − 2)2

δ2kY (lY − 4) lY
,

and the adjustment coefficient does not exist.
In Fig. 13, the upper and lower bounds (29) in the case 0 6 c 6 c∗ are drawn. Bounds,

when c > c∗, are beyond the scope of this article and are not considered, although the
essence of the complexity in their construction is clear. By dots, drawn are the simulated
values of uα,t(c), c > 0.

Let us make a final remark concerning analytical results in the case c > c∗. Although
the analytical aspects of the problem of finding uα(c) in Model (C) are conceptually clear,
the analytical solution is extremely difficult to present in an observable form, as it was
done in Model (A). This entails a computational awkwardness, rather than complexity,
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which is easy to overcome by a sacrifice of elegance of the bound, e.g., its smoothness and
even strict monotone decrease, as c increases10.

Two approaches to numerical calculations are as follows: if an analytical expression for
P{Υ [ren]

u,c < ∞} is available, then uα,t(c) is evaluated by numerically solving the equation
P{Υ [ren]

u,c < ∞} = α at every point c of interest. Otherwise, uα,t(c) is obtained by Monte
Carlo simulation.

Model (D). This model is verbally described as a model with renewal claims arrival,
i.e., the distribution of T is non-exponential, and with claim size Y exponentially distributed
with parameter %, e.g.,
Example (a ): T is 2-mixture and Y is exponentially distributed,
Example (b ): T is Erlang and Y is exponentially distributed,
Example (c ): T is Pareto and Y is exponentially distributed,
Example (d ): T is Kummer and Y is exponentially distributed.
Plainly, we have c∗ = 1/(% ET ), equation (4) can be rewritten as the equation (w.r.t. r)
E exp{−r c T} = 1− r/%, and κ is its positive solution. When c > c∗, we have P{Υ [ren]

u,c <
∞} = (1− κ/%) e−κu for all u > 0. Bearing in mind that 1− κ/% 6 1, we have

uα,t(c) 6 −ln α/κ, c > 1/(% E T ), (36)

and the problem reduces to finding κ in a closed form.
To set an example, let us focus on11 Model (D), Example (b ): T is Erlang with

parameters k integer and δ > 0 and Y is exponentially distributed with parameter % > 0.
We can show by elementary calculations that c∗ = δ/(k%),

M = k%/δ, D 2 = k (k + 1) %/δ 2,

and, when c > δ/(k%), the positive solution κ to Lundberg’s equation (4), which can be
rewritten as the equation (w.r.t. r)

(%− r) (δ + c r)k − δk r = 0,

is easy to find numerically.
In Fig. 10, the upper and lower bounds (29) in the case 0 6 c 6 δ/%, and the upper

bound (36) in the case c > δ/%, are drawn for t = 200, α = 0.05, δ = 8/5, k = 2, % = 3/5,
whence c∗ = 1.3333, M = 0.75, and D 2 = 1.40625. In Fig. 10, by dots are drawn the
simulated values of uα,t(c).

Model (E). This model is verbally described as a model with renewal claims arrival,
i.e., the distribution of T is non-exponential, and with claim size Y whose distribution is
light-tail, but not exponential, e.g.,
Example (a ): T is Erlang and Y is Erlang,
Example (b ): T is Erlang and Y is 2-mixture.

We address X
d= Y − c T , whose c.d.f. is FX , denote by FX(x) = 1 − FX(x) is tail

function, and write x0 = sup{x : FX(x) < 1}. When c > c∗ := EY /E T , we have

bÄ e−κu 6 P{Υ [ren]
u,c < ∞} 6 b⊕ e−κu for all u > 0, (37)

where κ is a positive solution to (4) and

b⊕ = inf
x∈[0,x0]

eκxFX(x)∫∞
x

eκy dFX(y)
, bÄ = sup

x∈[0,x0]

eκxFX(x)∫∞
x

eκy dFX(y)
.

10Simply speaking, the bound may be horizontal in some places.
11Note that this model is a particular case of Model (E), where T is Erlang with parameters k integer

and δ > 0 and Y is Erlang with parameters m integer and % > 0
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Alternatively, the inequalities (37) hold true with

b∗⊕ = inf
x∈[0,x∗0 ]

eκxFY (x)∫∞
x

eκy dFY (y)
, b∗Ä = sup

x∈[0,x∗0 ]

eκxFY (x)∫∞
x

eκy dFY (y)
,

where x∗0 = sup{x : FY (x) < 1}; the inequalities 0 6 b∗Ä 6 bÄ 6 b⊕ 6 b∗⊕ 6 1 hold.
Both upper and lower bounds for uα(c), c > c∗, which is a solution to equation

P{Υ [ren]
u,c < ∞} = α, and therefore upper bounds for uα,t(c), c > c∗, is easy to get from

(37), at least numerically.
Model (F). This model is verbally described as a model with renewal claims arrival,

i.e., the distribution of T is non-exponential, and with claim size Y , whose distribution is
fat-tail, e.g.,
Example (a ): T is 2-mixture and Y is Pareto,
Example (b ): T is Erlang and Y is Pareto,
Example (c ): T is Pareto and Y is Pareto.
Regarding this model, we repeat that any upper bound for uα,t(c), c > c∗, which assumes
small, rather than large values, is tightly related to the probability P{Υ [ren]

u,c < ∞} for
small, rather than large values of u.


