Saint Petersburg, 199178, Russia, Line 14th (Vasilyevsky Island), 29
(812) 363-68-71, (812) 363-68-72
ru en
Dmitry S. Shalymov
Dmitry S. Shalymov
Associate Professor
Contacts:

29B Line 14th (Vasilyevsky Island), 199178 Saint Petersburg, Russia

dmitry.shalymov@gmail.com

Reception hours:

By appointment.


Education

11.2009 — Ph.D. in Mathematics and Physics (Computer Science)
Institution: St. Petersburg State University
Thesis title: Software for the development and analysis of pattern
recognition systems using randomized algorithms
Advisors: O. N. Granichin

06.2006 — Eng. in Computer Science
Institution: St. Petersburg State Universitz


Scientific interests

Control theory, Speed-gradient principle, clustering analysis, randomized
algorithms, design and development of high-load software systems


Selected publications

  1. Shalymov D., Granichin O., Klebanov L., Volkovich Z. Literary writing style recognition via a minimal spanning tree-based approach // Expert Systems with Applications, 2016. — Vol. 61, — P. 145–153.
    https://www.sciencedirect.com/science/article/abs/pii/S0957417416302573
    https://doi.org/10.1016/j.eswa.2016.05.032
  2. Alexander L. Fradkov and Dmitry S. Shalymov Speed Gradient and MaxEnt Principles for Shannon and Tsallis Entropies // Entropy, 2015. — Vol. 17, — № 3. — P. 1090-1102
    https://www.mdpi.com/1099-4300/17/3/1090/xml
    https://doi.org/10.3390/e17031090
  3. Tatiana A. Khantuleva, Dmitry S. Shalymov Modelling non-equilibrium thermodynamic systems from the Speed-Gradient principle // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, March 2017, Vol. 375, 2017. https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0220
    https://doi.org/10.1098/rsta.2016.0220
  4. O. N. Granichin, D. S. Shalymov, R. Avros, Z. Volkovich A randomized algorithm for estimating the number of clusters // Automation and Remote Control, Vol. 72, P.754–765, 2011.
    https://link.springer.com/article/10.1134/S0005117911040072
    https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0324
    https://doi.org/10.1098/rspa.2015.0324
  5. Alexander L. Fradkov, Dmitry S. Shalymov Dynamics of non-stationary nonlinear processes that follow the maximum of differential entropy principle// Communications in Nonlinear Science and Numerical Simulation, 2015. — Vol. 29, — № 1-3. — P. 488-498
    https://www.sciencedirect.com/science/article/abs/pii/S1007570415002026
    https://doi.org/10.1016/j.cnsns.2015.06.001