2 группа. Материалы шестого занятия.

Старые задачи

Вычисление пределов

1. (Теорема Штольца) Пусть последовательность b_n положительна, не ограничена, и возрастает. Докажите, что

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}},\tag{1}$$

если второй предел существует.

2. Вычислите следующие пределы

1.
$$x_n = \frac{\sum_{k=1}^n k^p}{n^{p+1}}, \quad p > -1;$$

2.
$$x_n = \frac{\sum_{k=1}^n a^k k!}{a^n n!}, \quad a > 0;$$

3.
$$x_n = \frac{\sum_{k=1}^n \log k}{n \log n}$$
.

Новые задачи

Непрерывность

- 3. Непрерывны ли следующие функции:
 - 1. $\sin 1/x$, если $x \neq 0$ и 0 иначе;
 - 2. $x \sin 1/x$, если $x \neq 0$ и 0 иначе;
 - 3. e^{-1/x^2} при x > 0 и 0 иначе;
 - 4. $\{x\}\sin \pi x$?
- 4. Постройте функцию $f \colon \mathbb{R} \to \mathbb{R}$, разрывную в каждой точке, и такую, что функция f^2 непрерывна.
- 5. Аналогичная задача, но с функцией g(x) = f(f(x)) вместо f^2 .
- 6. Докажите, что уравнение $x = \cos x$ имеет хотя бы одно вещественное решение.
- 7. Докажите, что уравнение $x = \tan x$ имеет бесконечно много решений.
- 8. Являются ли эти функции равномерно непрерывными:
 - \sqrt{x} , $x \in [1, \infty)$;
 - $\sin x^2$, $x \in [1, \infty)$;
 - $\frac{1}{\pi 2 \arctan x}$, $x \in [1, \infty)$;
 - $x \log x$ $x \in [0,1]$?