1 группа. Материалы первого занятия.

Комплекснозначная функция вещественного аргумента

- 1. Какие кривые задаются следующими параметрическими уравнениями:
 - 1) $z(t) = t + it^2, t \in \mathbb{R};$
 - 2) z(t) = t + i/t, t > 0;
 - 3) $z(t) = ae^{it} + 1/ae^{-it}, t \in (0, 2\pi);$
 - 4) $z(t) = i\cos(t), t \in (0, 2\pi)$?
- 2. Вычислите производную функций $(1+i\sqrt{t})^n$; $(1-it)e^{it}$.
- 3. Пусть $f:[a,b] \to \mathbb{C}$ непрерывная, дифференцируемая комплекснозначная функция, $\lambda = \frac{f(b)-f(a)}{b-a}$. Верно ли, что найдется $t \in (a,b)$, т.ч. $f'(t) = \lambda$? Докажите, что λ принадлежит выпуклой оболочке значений множества $\{f'(t): t \in (a,b)\}$.
- 4. Вычислите интегралы $\int_0^1 \frac{dt}{1+it}$; $\int_0^1 \frac{1+it}{1-it} dt$.

Уравнения Коши-Римана

- 1. Докажите, что функция f(z) = u(x,y) + iv(x,y) дифференцируема в комплексном смысле тогда и только тогда, когда пара функций u и v удовлетворяет уравнениям Коши–Римана. Оператор комплексного дифференцирования обозначим $\frac{d}{dz}$.
- 2. Пусть $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} i \frac{\partial}{\partial y} \right)$, $\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. Докажите, что уравнения Коши–Римана можно записать в виде $\frac{\partial}{\partial \bar{z}} f = 0$ или $\frac{\partial}{\partial z} \bar{f} = 0$.
- 3. Докажите, что уравнения Коши-Римана не зависят от поворота комплексной плоскости.
- 4. Докажите, что аналитические функции образуют алгебру над полем комплексных чисел.
- 5. Докажите, что класс аналитических функций замкнут относительно композиции.
- 6. Пусть f комплексно дифференцируема в точке 0. Найдите её производную в направлении вектора $\omega \in \mathbb{C}$.
- 7. В каких точках плоскости комплексно дифференцируемы следующие функции:
 - 1) $\Re z$;
 - 2) x^2y^2 ;
 - 3) $|z|^2$;
 - 4) $x^2 + iy^2$?
- 8. Докажите, что функция $e^z = \sum_{j=0}^{\infty} \frac{z^j}{j!}$ аналитична в комплексной плоскости. Докажите формулы $\sinh z = -i \sin(iz)$ и $\cosh z = \cos(iz)$.

- 9. Где дифференцируема функция $\tan z$?
- 10. Пусть функция f комплексно дифференцируема и f'=0 всюду. Докажите, что f постоянна.
- 11. Пусть f комплексно дифференцируема и а) $\Re f$ б) |f| постоянна. Докажите, что f постоянна.