# Group theory and homotopy groups of spheres. Wu's formula 

Sergei O. Ivanov

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

## $\pi\left(H_{1}, H_{2}\right)$

- Let $G$ be a group and $H_{1}, H_{2} \triangleleft G$.
- $\left[H_{1}, H_{2}\right]=\left\langle\left\{\left[h_{1}, h_{2}\right] \mid h_{1} \in H_{1}, h_{2} \in H_{2}\right\}\right\rangle$
- $\left[h_{1}, h_{2}\right]=h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}$
- $\left[H_{1}, H_{2}\right] \subseteq H_{1} \cap H_{2}$.

$$
\pi\left(H_{1}, H_{2}\right):=\frac{H_{1} \cap H_{2}}{\left[H_{1}, H_{2}\right]}
$$

- $\pi\left(H_{1}, H_{2}\right)$ is abelian.
- Example: $\pi(H, H)=H_{\mathrm{ab}}$.
- Example: If $G=F(x, y)$ is the free group, $H_{1}=\langle x\rangle^{G}, H_{2}=\langle y\rangle^{G}$, then $\pi\left(H_{1}, H_{2}\right)=0$.
- Informally $\pi\left(H_{1}, H_{2}\right)$ measures how much $H_{1}$ and $H_{2}$ are 'linked'.


## $\pi\left(H_{1}, H_{2}, H_{3}\right)$

- $H_{1}, H_{2}, H_{3} \triangleleft G$.
- $\llbracket H_{1}, H_{2}, H_{3} \rrbracket=\left[H_{1} \cap H_{2}, H_{3}\right] \cdot\left[H_{1} \cap H_{3}, H_{2}\right] \cdot\left[H_{2} \cap H_{3}, H_{1}\right]$ fat commutator (non-standard term).
- $\left[H_{1}, H_{2}, H_{3}\right]_{S}=\left[\left[H_{1}, H_{2}\right], H_{3}\right] \cdot\left[\left[H_{1}, H_{3}\right], H_{2}\right] \cdot\left[\left[H_{2}, H_{3}\right], H_{1}\right]$ symmetric commutator.
- $\left[H_{1}, H_{2}, H_{3}\right]_{S} \subseteq \llbracket H_{1}, H_{2}, H_{3} \rrbracket$

$$
\pi\left(H_{1}, H_{2}, H_{3}\right):=\frac{H_{1} \cap H_{2} \cap H_{3}}{\llbracket H_{1}, H_{2}, H_{3} \rrbracket}
$$

- $\pi\left(H_{1}, H_{2}, H_{3}\right)$ is abelian.


## $\pi\left(H_{1}, \ldots, H_{n}\right)$

$$
\llbracket H_{1}, \ldots, H_{n} \rrbracket=\prod_{I \sqcup J=\{1, \ldots, n\}}\left[\bigcap_{i \in I} H_{i}, \bigcap_{j \in J} H_{j}\right]
$$

fat commutator (non-standard term).
-

$$
\left[H_{1}, \ldots, H_{n}\right]_{S}=\prod_{\sigma \in \Sigma_{n}}\left[H_{\sigma(1)}, \ldots, H_{\sigma(n)}\right]
$$

symmetric commutator.

- $\left[H_{1}, \ldots, H_{n}\right]_{S} \subseteq \llbracket H_{1}, \ldots, H_{n} \rrbracket$

$$
\pi\left(H_{1}, \ldots, H_{n}\right):=\frac{H_{1} \cap \cdots \cap H_{n}}{\llbracket H_{1}, \ldots, H_{n} \rrbracket}
$$

is abelian.

- Informally $\pi\left(H_{1}, \ldots, H_{n}\right)$ measures how much $H_{1}, \ldots, H_{n}$ are 'linked'.


## Wu's formula

- $G:=F\left(x_{0}, \ldots, x_{n-1}\right)$
- $R_{i}:=\left\langle x_{i}\right\rangle^{G} \quad$ for $0 \leq i \leq n-1$
- $R_{n}:=\left\langle x_{0} x_{1} \ldots x_{n-1}\right\rangle^{G}$
- Theorem. For $n \geq 2$

$$
\pi\left(R_{0}, \ldots, R_{n}\right)=\pi_{n+1}\left(S^{2}\right)
$$

- Lemma. $\llbracket R_{0}, \ldots, R_{n} \rrbracket=\left[R_{0}, \ldots, R_{n}\right]_{S}$
- Wu's formula: For $n \geq 2$

$$
\pi_{n+1}\left(S^{2}\right)=\frac{R_{0} \cap \cdots \cap R_{n}}{\left[R_{0}, \ldots, R_{n}\right]_{S}}
$$

- Corollary. $\pi_{n+1}\left(S^{2}\right)=Z\left(F /\left[R_{0}, \ldots, R_{n}\right]_{S}\right)$


## Informally: the groups $R_{0}, \ldots, R_{n}$ are 'linked'

Informally: the groups $\left\langle x_{0}\right\rangle^{F}, \ldots,\left\langle x_{n-1}\right\rangle^{F},\left\langle x_{0} \ldots x_{n-1}\right\rangle^{F}$ are 'linked'.


The product of elements in the circle is trivial.

## Simplicial homotopy theory. Abstract simplicial complexes

- An abstract simplicial complex $K$ is a family of finite sets such that if $X \in K$ and $Y \subseteq X$ then $Y \in K$.
- 



$$
\begin{aligned}
& K=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\} \\
& \{1,2\},\{1,4\},\{1,3\},\{2,3\}\{2,4\},\{3,4\}\{3,5\}, \\
& \{5,6\},\{5,7\},\{5,8\},\{6,7\},\{7,8\},\{7,9\}, \\
& \{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{5,6,7\}, \\
& \{1,2,3,4\}\}
\end{aligned}
$$

- $\operatorname{Vert}(K)=\cup_{X \in K} X$
- $n$-simplex of $K$ is a $n+1$-element set in $K$
- There is a natural way to associate topological space called geometric realisation

$$
K \mapsto|K| .
$$

- An abstract simplicial complex is a good and simple combinatorial model for a space.
- We can define morphisms of abstract simplicial complexes.
- But we can not define homotopy of such morphisms in a combinatorial way.
- If we want to develop homotopy theory in a combinatorial way, we should use a less intuitive notion of simplicial set.
- It is less intuitive because simplicial sets contain degenerate simplexes whose geometric interpretation is not obvious.


## Simplicial sets

A simplicial set $X$ is a sequence of sets

$$
X_{0}, X_{1}, \ldots
$$

together with maps $d_{i}: X_{n} \rightarrow X_{n-1}$ and $s_{i}: X_{n} \rightarrow X_{n+1}$ for $0 \leq i \leq n$ satisfying identities:
(1) $d_{i} d_{j}=d_{j-1} d_{i}$ if $i<j$;
(2) $s_{i} s_{j}=s_{j} s_{i-1}$ if $i>j$;
(3) $d_{i} s_{j}=s_{j-1} d_{i}$ if $i<j$;
(1) $d_{i} s_{i}=\mathrm{id}=d_{i} s_{i+1}$;
(6) $d_{i} s_{j}=s_{j} d_{i-1}$ if $i>j+1$.
$d_{i}$ is called $i$ th face. $s_{i}$ is called $i$ th degeneracy.
Elements of $X_{n}$ are called $n$-simplexes.
An $n$-simplex is called degenerate if $x=s_{i}(y)$ for some $i$ and $y$. Again there is a notion of geometric realisation

$$
X \mapsto|X| .
$$

## Example: simplicial set of an abstract simplicial complex

- Let $K$ be an abstract simplicial complex. Assume that $\operatorname{Vert}(K)$ is totally ordered.
- $S(K)$ is a simplicial set consisting of ordered tuples of vertices:

$$
\begin{gathered}
S(K)_{n}=\left\{\left(v_{0}, \ldots, v_{n}\right) \mid v_{0} \leq \cdots \leq v_{n},\left\{v_{0}, \ldots, v_{n}\right\} \in K\right\} \\
d_{i}\left(v_{0}, \ldots, v_{n}\right)=\left(v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right) \\
s_{i}\left(v_{0}, \ldots, v_{n}\right)=\left(v_{0}, \ldots, v_{i}, v_{i}, \ldots, v_{n}\right)
\end{gathered}
$$

- $\left(v_{0}, \ldots, v_{n}\right)$ is degenerate if $v_{i}=v_{i+1}$ for some $i$.
- $|K|=|S(K)|$


## Homotopy groups of siplicial sets

- A pointed simplicial set $X$ is a simplicial set such that each set $X_{n}$ is pointed $* \in X_{n}$ and $d_{i}, s_{i}$ preserve the base points.
- If $X$ is a pointed simplicial set, then $|X|$ is pointed.
- If $X$ is a pointed siplicial set we define homotopy groups in the 'stupid' way:

$$
\pi_{i}(X):=\pi_{i}(|X|)
$$

- There is an 'internal' definition that does not use topological spaces. But it requires more theory.
- Moreover, all algebraic topology can be developed in internal terms of simplicial sets.


## Homotopy groups of simplicial groups. Moore complex

- Simplicial group is a simplicial set $G$ whose components are groups $G_{n}$ and $d_{i}, s_{i}$ are homomorphisms.
- Moore complex $N(G)$ consists of (non-abelian) groups

$$
N_{n}(G)=\bigcap_{i \neq 0} \operatorname{Ker}\left(d_{i}: G_{n} \rightarrow G_{n-1}\right)
$$

and differentials

$$
\partial_{n}^{G}: N_{n}(G) \rightarrow N_{n-1}(G), \quad \partial_{n}^{G}(g)=d_{0}(g)
$$

- $\operatorname{Im}\left(\partial_{n+1}^{G}\right) \triangleleft \operatorname{Ker}\left(\partial_{n}^{G}\right)$
- Theorem:

$$
\pi_{n}(G) \cong \frac{\operatorname{Ker}\left(\partial_{n}^{G}\right)}{\operatorname{Im}\left(\partial_{n+1}^{G}\right)}
$$

- We can compute homotopy groups of simplicial groups without topology.


## Homotopy groups of simplicial groups. Degenerate components

- Theorem. Let $G$ be a simplicial group and $G_{n+1}$ is generated as a group by degenerate simplexes. Set $K_{i}:=\operatorname{Ker}\left(d_{i}: G_{n} \rightarrow G_{n-1}\right)$. Then

$$
\pi_{n}(G)=\pi\left(K_{0}, \ldots, K_{n}\right)
$$

- J.L. Castiglioni and M. Ladra: Peiffer elements in simplicial groups and algebras, J. Pure Appl. Alg., 212, (2008), 2115-2128.


## Milnor's $F[X]$-construction for a simplicial set $X$

- For a set $X$ we denote by $F(X)$ the free group generated by $X$.
- For a pointed set $X$ we denote by $F[X]$ the quotient

$$
F[X]=F(X) /(*=1) .
$$

- $F[X] \cong F(X \backslash\{*\})$ is a free group.
- For a pointed simplicial set $X$ we define a simplicial group $F[X]$ component-wise $F[X]_{n}=F\left[X_{n}\right]$ and homomorphisms $d_{i}: F\left[X_{n}\right] \rightarrow F\left[X_{n-1}\right]$ and $s_{i}: F\left[X_{n}\right] \rightarrow F\left[X_{n+1}\right]$ are induced by $d_{i}, s_{i}$ for $X$.
- $F[X]$ is called Milnor's construction of $X$.
- Theorem.

$$
\pi_{n+1}(\Sigma|X|)=\pi_{n}(F[X])
$$

where $\Sigma|X|$ is the suspension of $|X|$.

- Hence, in order to compute homotopy groups of the suspension of a space (for example $S^{2}=\Sigma S^{1}$ ) it is enough to use group theory.


## Simplicial circle

- $S^{1}$ is a pointed simplicial set such that

$$
\left(S^{1}\right)_{n}=\left\{*, x_{0}, \ldots, x_{n-1}\right\}
$$

$d_{0}\left(x_{0}\right)=* ;$
$d_{j}\left(x_{i}\right)=x_{i-1}$ for $j \leq i \neq 0 ;$
$d_{j}\left(x_{i}\right)=x_{i}$ for $j>i \neq n-1$;
$d_{n}\left(x_{n-1}\right)=*$.
$s_{j}\left(x_{i}\right)=x_{i}$ for $j>i$
$s_{j}\left(x_{i}\right)=x_{i+1}$ for $j \leq i$.

- $\left|S^{1}\right|$ is the usual circle.


## Milnor's construction of the simplicial circle. Wu's formula

- $F\left[S^{1}\right]_{n}=F\left(x_{0}, \ldots, x_{n-1}\right)$;
- $K_{0}:=\operatorname{Ker}\left(d_{0}\right)=\left\langle x_{0}\right\rangle^{F}$
- $K_{i}:=\operatorname{Ker}\left(d_{i}\right)=\left\langle x_{i-1}^{-1} x_{i}\right\rangle^{F}$ for $1 \leq i \leq n-1$
- $K_{n}:=\operatorname{Ker}\left(d_{n}\right)=\left\langle x_{n-1}\right\rangle^{F}$

$$
\pi_{n+1}\left(S^{2}\right)=\pi_{n}\left(F\left[S^{1}\right]\right)=\pi\left(K_{0}, \ldots, K_{n}\right)
$$

- If we change the basis

$$
x_{0}^{\prime}=x_{0}, \quad x_{i}^{\prime}=x_{i-1}^{-1} x_{i},
$$

for $1 \leq i \leq n-1$, then for $0 \leq j \leq n-1$

$$
K_{j}=\left\langle x_{j}^{\prime}\right\rangle^{F}, \quad K_{n}=\left\langle x_{0}^{\prime} \cdot \ldots \cdot x_{n-1}^{\prime}\right\rangle^{F}
$$

- Then $\pi_{n+1}\left(S^{2}\right)=\pi\left(\left\langle x_{0}^{\prime}\right\rangle^{F}, \ldots,\left\langle x_{n-1}^{\prime}\right\rangle,\left\langle x_{0}^{\prime} \cdot \ldots \cdot x_{n-1}^{\prime}\right\rangle\right)$.


## Appendix: our result

- If $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ are ideals of a ring $R$ we set

$$
\left\|\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right\|=\sum_{I \sqcup J=\{1, \ldots, n\}}\left(\bigcap_{i \in I} \mathfrak{a}_{i}\right) \cdot\left(\bigcap_{j \in J} \mathfrak{a}_{j}\right)
$$

- If $\mathfrak{a} \leq \mathbb{Z}[G]$ the dimension subgroup of $\mathfrak{a}$ is

$$
D(\mathfrak{a})=G \cap(1+\mathfrak{a}) .
$$

- Theorem (R. Mikhailov, J. Wu, -) Let $R, S, T$ be normal subgroups of a group $G$. Consider ideals of $\mathbb{Z}[G]$

$$
\mathbf{r}=(R-1) \mathbb{Z}[G], \quad \mathbf{s}=(S-1) \mathbb{Z}[G], \quad \mathbf{t}=(T-1) \mathbb{Z}[G] .
$$

Then $\frac{D(\|\mathbf{r}, \mathbf{s}, \mathbf{t}\|)}{[R, S, T]}$ is a $\mathbb{Z} / 2$-vector space.

- A purely algebraic statement proved using homotopy theory.
- arXiv:1506.08324

