Group theory and homotopy groups of spheres. Wu's formula

Sergei O. Ivanov

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

$\pi(H_1,H_2)$

٢

- Let G be a group and $H_1, H_2 \triangleleft G$.
- $[H_1, H_2] = \langle \{ [h_1, h_2] \mid h_1 \in H_1, h_2 \in H_2 \} \rangle$
- $[h_1, h_2] = h_1^{-1} h_2^{-1} h_1 h_2$
- $[H_1, H_2] \subseteq H_1 \cap H_2.$

$$\pi(H_1,H_2) \coloneqq \frac{H_1 \cap H_2}{[H_1,H_2]}$$

- $\pi(H_1, H_2)$ is abelian.
- Example: $\pi(H,H) = H_{ab}$.
- Example: If G = F(x, y) is the free group, $H_1 = \langle x \rangle^G$, $H_2 = \langle y \rangle^G$, then $\pi(H_1, H_2) = 0$.
- Informally $\pi(H_1, H_2)$ measures how much H_1 and H_2 are 'linked'.

۵

- $H_1, H_2, H_3 \triangleleft G.$
- $\llbracket H_1, H_2, H_3 \rrbracket = [H_1 \cap H_2, H_3] \cdot [H_1 \cap H_3, H_2] \cdot [H_2 \cap H_3, H_1]$ fat commutator (non-standard term).
- $[H_1, H_2, H_3]_S = [[H_1, H_2], H_3] \cdot [[H_1, H_3], H_2] \cdot [[H_2, H_3], H_1]$ symmetric commutator.

•
$$[H_1, H_2, H_3]_S \subseteq \llbracket H_1, H_2, H_3 \rrbracket$$

$$\pi(H_1, H_2, H_3) \coloneqq \frac{H_1 \cap H_2 \cap H_3}{\llbracket H_1, H_2, H_3 \rrbracket}$$

• $\pi(H_1, H_2, H_3)$ is abelian.

۲

۲

۲

$$\llbracket H_1, \dots, H_n \rrbracket = \prod_{I \sqcup J = \{1, \dots, n\}} \left[\bigcap_{i \in I} H_i , \bigcap_{j \in J} H_j \right]$$

fat commutator (non-standard term).

$$[H_1,\ldots,H_n]_S = \prod_{\sigma\in\Sigma_n} [H_{\sigma(1)},\ldots,H_{\sigma(n)}]$$

symmetric commutator.

•
$$[H_1, \ldots, H_n]_S \subseteq \llbracket H_1, \ldots, H_n \rrbracket$$

 $\pi(H_1,\ldots,H_n) \coloneqq \frac{H_1 \cap \cdots \cap H_n}{\llbracket H_1,\ldots,H_n \rrbracket}$

is abelian.

• Informally $\pi(H_1, \ldots, H_n)$ measures how much H_1, \ldots, H_n are 'linked'.

Wu's formula

- G := F(x₀,...,x_{n-1})
 R_i := ⟨x_i⟩^G for 0 ≤ i ≤ n − 1
- $R_n \coloneqq \langle x_0 x_1 \dots x_{n-1} \rangle^G$
- Theorem. For $n \ge 2$

$$\pi(R_0,\ldots,R_n)=\pi_{n+1}(S^2)$$

- Lemma. $[\![R_0, \ldots, R_n]\!] = [R_0, \ldots, R_n]_S$
- Wu's formula: For $n \ge 2$

$$\pi_{n+1}(S^2) = \frac{R_0 \cap \dots \cap R_n}{[R_0, \dots, R_n]_S}$$

• Corollary. $\pi_{n+1}(S^2) = Z(F/[R_0, ..., R_n]_S)$

Informally: the groups R_0, \ldots, R_n are 'linked'

Informally: the groups $\langle x_0 \rangle^F, \ldots, \langle x_{n-1} \rangle^F, \langle x_0 \ldots x_{n-1} \rangle^F$ are 'linked'.

The product of elements in the circle is trivial.

Simplicial homotopy theory. Abstract simplicial complexes

• An abstract simplicial complex K is a family of finite sets such that if $X \in K$ and $Y \subseteq X$ then $Y \in K$.

$$\begin{split} &K = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\} \\ &\{1,2\},\{1,4\},\{1,3\},\{2,3\}\{2,4\},\{3,4\}\{3,5\}, \\ &\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{7,8\},\{7,9\}, \\ &\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{5,6,7\}, \\ &\{1,2,3,4\}\} \end{split}$$

- Vert $(K) = \bigcup_{X \in K} X$
- n-simplex of K is a n + 1-element set in K
- There is a natural way to associate topological space called geometric realisation

$$K \mapsto |K|.$$

Sergei O. Ivanov

- An abstract simplicial complex is a good and simple combinatorial model for a space.
- We can define morphisms of abstract simplicial complexes.
- But we **can not** define **homotopy** of such morphisms in a combinatorial way.
- If we want to develop homotopy theory in a combinatorial way, we should use a less intuitive notion of **simplicial set**.
- It is less intuitive because simplicial sets contain **degenerate simplexes** whose geometric interpretation is not obvious.

Simplicial sets

A simplicial set X is a sequence of sets X_0, X_1, \ldots

together with maps $d_i: X_n \to X_{n-1}$ and $s_i: X_n \to X_{n+1}$ for $0 \le i \le n$ satisfying identities:

d_id_j = d_{j-1}d_i if i < j;
s_is_j = s_js_{i-1} if i > j;
d_is_j = s_{j-1}d_i if i < j;
d_is_i = id = d_is_{i+1};
d_is_i = s_id_{i-1} if i > j + 1.

 d_i is called *i*th **face**. s_i is called *i*th **degeneracy**. Elements of X_n are called *n*-simplexes. An *n*-simplex is called **degenerate** if $x = s_i(y)$ for some *i* and *y*. Again there is a notion of geometric realisation

$$X \mapsto |X|.$$

- Let K be an abstract simplicial complex. Assume that Vert(K) is totally ordered.
- S(K) is a simplicial set consisting of **ordered** tuples of vertices:

$$S(K)_{n} = \{(v_{0}, \dots, v_{n}) \mid v_{0} \leq \dots \leq v_{n}, \{v_{0}, \dots, v_{n}\} \in K\}$$

$$d_{i}(v_{0}, \dots, v_{n}) = (v_{0}, \dots, v_{i-1}, v_{i+1}, \dots, v_{n})$$

$$s_{i}(v_{0}, \dots, v_{n}) = (v_{0}, \dots, v_{i}, v_{i}, \dots, v_{n})$$

• (v_{0}, \dots, v_{n}) is degenerate if $v_{i} = v_{i+1}$ for some i .
• $|K| = |S(K)|$

- A pointed simplicial set X is a simplicial set such that each set X_n is pointed $* \in X_n$ and d_i, s_i preserve the base points.
- If X is a pointed simplicial set, then |X| is pointed.
- If X is a pointed siplicial set we define homotopy groups in the 'stupid' way:

$$\pi_i(X) \coloneqq \pi_i(|X|).$$

- There is an 'internal' definition that does not use topological spaces. But it requires more theory.
- Moreover, all algebraic topology can be developed in internal terms of simplicial sets.

Homotopy groups of simplicial groups. Moore complex

- Simplicial group is a simplicial set G whose components are groups G_n and d_i, s_i are homomorphisms.
- Moore complex N(G) consists of (non-abelian) groups

$$N_n(G) = \bigcap_{i \neq 0} \operatorname{Ker}(d_i : G_n \to G_{n-1})$$

and differentials

$$\partial_n^G : N_n(G) \to N_{n-1}(G), \qquad \partial_n^G(g) = d_0(g).$$

- $\operatorname{Im}(\partial_{n+1}^G) \triangleleft \operatorname{Ker}(\partial_n^G)$
- Theorem:

$$\pi_n(G) \cong \frac{\operatorname{Ker}(\partial_n^G)}{\operatorname{Im}(\partial_{n+1}^G)}.$$

• We can compute homotopy groups of simplicial groups without topology.

Homotopy groups of simplicial groups. Degenerate components

• **Theorem.** Let G be a simplicial group and G_{n+1} is generated as a group by degenerate simplexes. Set $K_i := \text{Ker}(d_i : G_n \to G_{n-1})$. Then

$$\pi_n(G) = \pi(K_0, \ldots, K_n)$$

 J.L. Castiglioni and M. Ladra: Peiffer elements in simplicial groups and algebras, J. Pure Appl. Alg., 212, (2008), 2115-2128.

Milnor's F[X]-construction for a simplicial set X

- For a set X we denote by F(X) the free group generated by X.
- For a pointed set X we denote by F[X] the quotient

F[X] = F(X)/(*=1).

- $F[X] \cong F(X \setminus \{*\})$ is a free group.
- For a pointed simplicial set X we define a simplicial group F[X] component-wise $F[X]_n = F[X_n]$ and homomorphisms $d_i : F[X_n] \to F[X_{n-1}]$ and $s_i : F[X_n] \to F[X_{n+1}]$ are induced by d_i, s_i for X.
- F[X] is called **Milnor's construction** of X.
- Theorem.

$$\pi_{n+1}(\Sigma|X|) = \pi_n(F[X]),$$

where $\Sigma|X|$ is the suspension of |X|.

• Hence, in order to compute homotopy groups of the suspension of a space (for example $S^2 = \Sigma S^1$) it is enough to use group theory.

• S^1 is a pointed simplicial set such that

$$(S^1)_n = \{*, x_0, \dots, x_{n-1}\}$$

$$d_{0}(x_{0}) = *;$$

$$d_{j}(x_{i}) = x_{i-1} \text{ for } j \leq i \neq 0;$$

$$d_{j}(x_{i}) = x_{i} \text{ for } j > i \neq n-1;$$

$$d_{n}(x_{n-1}) = *.$$

$$s_{j}(x_{i}) = x_{i} \text{ for } j > i$$

$$s_{j}(x_{i}) = x_{i+1} \text{ for } j \leq i.$$

• $|S^1|$ is the usual circle.

Milnor's construction of the simplicial circle. Wu's formula

•
$$F[S^1]_n = F(x_0, ..., x_{n-1});$$

• $K_0 := \text{Ker}(d_0) = \langle x_0 \rangle^F$
• $K_i := \text{Ker}(d_i) = \langle x_{i-1}^{-1} x_i \rangle^F \text{ for } 1 \le i \le n-1$
• $K_n := \text{Ker}(d_n) = \langle x_{n-1} \rangle^F$

$$\pi_{n+1}(S^2) = \pi_n(F[S^1]) = \pi(K_0, \dots, K_n)$$

• If we change the basis

$$x'_0 = x_0, \qquad x'_i = x_{i-1}^{-1} x_i,$$

for $1 \le i \le n-1$, then for $0 \le j \le n-1$

$$K_j = \langle x'_j \rangle^F, \qquad K_n = \langle x'_0 \cdot \ldots \cdot x'_{n-1} \rangle^F.$$

• Then $\pi_{n+1}(S^2) = \pi(\langle x'_0 \rangle^F, \ldots, \langle x'_{n-1} \rangle, \langle x'_0 \cdot \ldots \cdot x'_{n-1} \rangle).$

Appendix: our result

• If $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are ideals of a ring R we set

$$\|\mathfrak{a}_1,\ldots,\mathfrak{a}_n\| = \sum_{I\sqcup J=\{1,\ldots,n\}} \left(\bigcap_{i\in I} \mathfrak{a}_i\right) \cdot \left(\bigcap_{j\in J} \mathfrak{a}_j\right)$$

• If $\mathfrak{a} \leq \mathbb{Z}[G]$ the dimension subgroup of \mathfrak{a} is

$$D(\mathfrak{a}) = G \cap (1 + \mathfrak{a}).$$

• **Theorem** (R. Mikhailov, J. Wu, –) Let R, S, T be normal subgroups of a group G. Consider ideals of $\mathbb{Z}[G]$

$$\mathbf{r} = (R-1)\mathbb{Z}[G], \quad \mathbf{s} = (S-1)\mathbb{Z}[G], \quad \mathbf{t} = (T-1)\mathbb{Z}[G].$$

Then $\frac{D(\|\mathbf{r},\mathbf{s},\mathbf{t}\|)}{[R,S,T]}$ is a $\mathbb{Z}/2$ -vector space.

• A purely algebraic statement proved using homotopy theory.

• arXiv:1506.08324

Sergei O. Ivanov