HR-localization and HR-length of a group

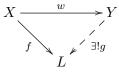
Sergei O. Ivanov

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

- General theory of localizations of objects in a category.
- **topology**: theory of homological *R*-localization.
- group theory: *HR*-localization, *HR*-length, homology of completions.

Local object

- Let \mathcal{C} be a category and $\mathcal{W} \subseteq \operatorname{Mor}(\mathcal{C})$.
- An object $L \in \mathcal{C}$ is **local** (with respect to \mathcal{W}) if for any morphism $w: X \to Y$ in \mathcal{W} and any $f: X \to L$ there exists a unique $g: Y \to L$ such that gw = f



• In other words, the induced map is a bijection.

$$w^* : \operatorname{Hom}_{\mathcal{C}}(Y, L) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X, L)$$

- Roughly speaking, L is local if it can't distinguish morphisms of \mathcal{W} from isomorphisms from its back.
- $Loc(\mathcal{C}) = Loc_{\mathcal{W}}(\mathcal{C})$ is the full subcategory of local objects.

• Let C = Ab be the category of abelien groups and W consists of homomorphisms $w : A \to B$ such that

$$w\otimes \mathbb{Q}:A\otimes \mathbb{Q}\xrightarrow{\cong} B\otimes \mathbb{Q}$$

is an isomorphism.

۲

 $Loc(Ab) = {\mathbb{Q}-vector spaces}.$

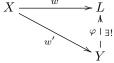
Localisation of an object

• A localization of $X \in \mathcal{C}$ is a morphism

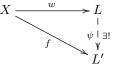
$$w: X \to L,$$

where $w \in \mathcal{W}$ and L is local.

- If $w: X \to L$ is a localization then is satisfies two universal properties:
 - For any $w': X \to Y$ from \mathcal{W} there exists a unique $\varphi: Y \to L$ such that $X \xrightarrow{w} L$



2 For any $f: X \to L'$, where L' is local, there exists a unique $\psi: L \to L'$ such that $\mathbf{v} = \mathbf{w}$



• If localisation exists, it is unique up to isomorphism.

- Example. If C = Ab and W as before, then $A \to A \otimes \mathbb{Q}$ is the localization.
- Assume that any object of ${\mathcal C}$ has a localization. Then it defines a functor of localization

$$\mathsf{L}:\mathcal{C}\to\mathsf{Loc}(\mathcal{C}).$$

- The functor L is the left adjoint to the embedding $Loc(\mathcal{C}) \hookrightarrow \mathcal{C}$.
- \bullet The functor L is the localization of the category $\mathcal C$ by $\mathcal W$

 $\mathcal{C}[\mathcal{W}^{-1}] \cong \mathsf{Loc}(\mathcal{C}).$

R-localization of a space

- Let R be a commutative ring and \mathcal{H} be the homotopy category of spaces (topological spaces or simplicial sets).
- \mathcal{W}_R the class of *R*-homology equivalences i.e. maps $f: X \to Y$ in \mathcal{H} such that the induced map

$$H_*(f,R): H_*(X,R) \xrightarrow{\cong} H_*(Y,R)$$

is an isomorphism.

- A space is *R*-local if it is local with respect to \mathcal{W}_R .
- *R*-localization of a space X is the W_R -localization. It always exists (complicated theorem of Bousfield!) and defines a functor

$$\mathcal{H} \longrightarrow \mathcal{H}_R, \qquad X \mapsto X_R,$$

where \mathcal{H}_R is the subcategory of *R*-local spaces.

• If R is a subring of \mathbb{Q} and X is 1-connected, then X_R coincides with the Sullivan localization.

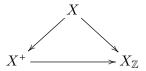
Example: plus construction

- Let X be a space and $N \subseteq \pi_1(X)$ be a normal perfect subgroup.
- Plus construction of X with respect to N is the universal map in the homotopy category

$$X \longrightarrow X^+,$$

such that $N \subseteq \text{Ker}(\pi_1(X) \to \pi_1(X^+))$.

- $\pi_1(X^+) = \pi_1(X)/N$ and $H_*(X,\mathbb{Z}) \cong H_*(X^+,\mathbb{Z})$.
- Then there is a triangle of integral homology equivalences



- Let A be a ring, $GL(A) = \varinjlim GL_n(A)$ and $N = E(A) = \varinjlim E_n(A)$.
- Quillen's K-theory is defined as follows

$$K_i(A) = \pi_i(B\mathrm{GL}(A)^+).$$

• It follows from results of F. Keune and Bousfield-Kan that

 $BGL(A)^+ = BGL(A)_{\mathbb{Z}}.$

- Further we assume $R = \mathbb{Z}/n$ or $R \subseteq \mathbb{Q}$.
- If \tilde{R} is a commutative ring and $R \subseteq \tilde{R}$ is the maximal subring of this form, then $\mathcal{W}_R = \mathcal{W}_{\tilde{R}}$.
- Question: How to compute $\pi_1(X_R)$?

$$\pi_1(X_R) \cong \pi_1(X)_{HR},$$

where G_{HR} is the *HR*-localization of a group *G*.

HR-localization of a group

• Let $\mathcal{C} = \mathsf{Gr}$ and \mathcal{W}_{HR} consists of homomorphisms $f: G \to H$ such that

• $f_*: H_1(G, R) \xrightarrow{\cong} H_1(H, R)$ is an isomorphism;

2 $f_*: H_2(G, R) \twoheadrightarrow H_2(H, R)$ is an epimorphism.

• Then the *HR*-localization of a group is the \mathcal{W}_{HR} -localization. It always exists.

$$G \longrightarrow G_{HR}$$

• An *R*-central extension is a central extension $E \twoheadrightarrow G$, whose kernel is an *R*-module.

Theorem (Bousfield)

The class of HR-local groups is the smallest class of groups containing the trivial group and closed under R-central extensions, products and kernels (\Rightarrow small limits).

• **Example.** (Pro)nilpotent groups are $H\mathbb{Z}$ -local.

Pronilpotent completion and $H\mathbb{Z}$ -localization

- Let $R = \mathbb{Z}$.
- For a group G denote by $G = \gamma_1(G) \supseteq \gamma_2(G) \supseteq \dots$ its lower central series $\gamma_{n+1}(G) = [\gamma_n(G), G]$.
- The pronilpotent completion of G is

$$\hat{G} \coloneqq \lim_{\longleftarrow} G/\gamma_n(G).$$

• \hat{G} is $H\mathbb{Z}$ -local, and hence, there is a unique homomorphism

$$G_{H\mathbb{Z}} \to \hat{G}$$

that commutes with the maps from G.

Theorem (Bousfield)

If G is finitely generated, $G_{H\mathbb{Z}} \rightarrow \hat{G}$ is an epimorphism.

• Usually $G_{H\mathbb{Z}}$ and \hat{G} are uncountable groups. But if G is finitely generated, $H_2(G_{H\mathbb{Z}})$ is countable or finite, while $H_2(\hat{G})$ can be uncountable.

Sergei O. Ivanov

Pronilpotent completion and $H\mathbb{Z}$ -localization

• Transfinite lower central series $\gamma_{\alpha} = \gamma_{\alpha}(G)$ of G is a transfinite sequence of subgroups such that

$$\gamma_{\alpha+1} = [\gamma_{\alpha}, G], \qquad \gamma_{\tau} = \bigcap_{\alpha < \tau} \gamma_{\alpha}$$

for an ordinal α and a limit ordinal τ .

• G is transfinitely nilpotent if there is α such that $\gamma_{\alpha}(G) = 1$.

Theorem

 $G_{H\mathbb{Z}}$ is transfinitely nilpotent. If G is finitely generated, then $\hat{G} = G_{H\mathbb{Z}}/\gamma_{\omega}$.

- $H\mathbb{Z}$ -length $(G) \coloneqq \min\{\alpha \mid \gamma_{\alpha}(G_{H\mathbb{Z}}) = 1\}$
- If G is finitely generated, $H\mathbb{Z}$ -length $(G) \leq \omega$ iff $G_{H\mathbb{Z}} \cong \hat{G}$.
- $H\mathbb{Z}$ -length $(G) < \omega$ iff G is prenilpotent.
- There is a recursive transfinite construction of $G_{H\mathbb{Z}}$ with with the number of steps $H\mathbb{Z}$ -length(G).

• The main mystery of the theory:

```
H\mathbb{Z}-length(F) = ?,
```

where F is a finitely generated free group (non-cyclic).Bousfield has proved that

 $H\mathbb{Z}\text{-length}(F) \ge \omega + 1$

Theorem (R.Mikhailov, – (2016, not published))

 $H\mathbb{Z}$ -length $(F) \ge \omega + 2$.

• arXiv:1605.08198v2

• $\mathcal{K} = \mathbb{Z} \rtimes \mathbb{Z}$ is the Klein bottle group.

•
$$\gamma_n(\mathcal{K}) = 2^{n-1}\mathbb{Z} \rtimes 0.$$

• $\hat{\mathcal{K}} = \mathbb{Z}_2 \rtimes \mathbb{Z}$, where $\mathbb{Z}_2 = \varprojlim \mathbb{Z}/2^n$ is the group of 2-adic integers.

•
$$H_2(\mathcal{K}_{H\mathbb{Z}}) = H_2(\mathcal{K}) = 0, \qquad H_2(\hat{\mathcal{K}}) \cong H_2(\mathbb{Z}_2) \cong \wedge^2 \mathbb{Z}_2.$$

- $\mathcal{K}_{H\mathbb{Z}} \notin \hat{\mathcal{K}} \cong \mathcal{K}_{H\mathbb{Z}}/\gamma_{\omega}$.
- $H\mathbb{Z}$ -length $(\mathcal{K}) > \omega$.

Proposition (R. Mikhailov, – (2016, non-published))

 $H\mathbb{Z}$ -length(\mathcal{K}) = ω + 1 and there is a central extension

$$\wedge^2 \mathbb{Z}_2 \rtimes \mathcal{K}_{H\mathbb{Z}} \twoheadrightarrow \mathbb{Z}_2 \rtimes \mathbb{Z}.$$

 $\wedge^2 \mathbb{Z}_2 \cong \wedge^2 \mathbb{Q}_2$ is a \mathbb{Q} -vector space.

Proposition (R. Mikhailov, – (2016, not published)) $\mathcal{K}_{H\mathbb{Z}} \cong \mathbb{Z} \times \mathbb{Z}_2 \times (\wedge^2 \mathbb{Z}_2)$ $(n, a, \alpha)(m, b, \beta) = (n + m, a + (-1)^n b, \alpha + \beta + \frac{(-1)^n}{2} \cdot a \wedge b)$

The first complete description of $G_{H\mathbb{Z}}$, for a finitely generated group G, when $G_{H\mathbb{Z}} \notin \hat{G}$.

Finitely presented groups of the form $M\rtimes C$

- $C = \langle t \rangle$ is the infinite cyclic group.
- M is a finitely generated $\mathbb{Z}[C]$ -module.
- (Bieri-Strebel) The group $M \rtimes C$ is finitely presented iff
 - $V = M \otimes \mathbb{Q}$ is finite dimensional;
 - **2** the torsion subgroup of M is finite;
 - **③** there is a generator t of C such that the characteristic polynomial χ_M of t ⊗ Q ∈ GL(V) is integral.

Theorem (Mikhailov, -, 2016, non-published)

Let $G = M \rtimes C$ be finitely presented and $\mu_M = (x - \lambda_1)^{m_1} \dots (x - \lambda_l)^{m_l}$ be the minimal polynomial of $t \otimes \mathbb{Q}$, where $\lambda_1, \dots, \lambda_l \in \mathbb{C}$ are distinct.

Assume that
$$\lambda_i \lambda_j = 1$$
 holds only if $\lambda_i = \lambda_j = 1$. Then
 $H\mathbb{Z}$ -length $(G) \le \omega$.

Assume that $\lambda_i \lambda_j = 1$ holds only if either $\lambda_i = \lambda_j = 1$ or $m_i = m_j = 1$. Then $H\mathbb{Z}$ -length $(G) \le \omega + 1$.

• $M = \mathbb{Z}^2$ and $C = \langle t \rangle$ acts on M by the matrix

$$\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$$

- $\mu_M = (x+1)^2$
- $\lambda_1 = -1, \ m_1 = 2, \ \lambda_1 \lambda_1 = 1.$
- $H\mathbb{Z}$ -length $(M \rtimes C) \ge \omega + 2$.

On a problem of Bousfield

- Let $R = \mathbb{Z}/n, R \subseteq \mathbb{Q}$.
- There is a notion of *R*-completion of a group \hat{G}_R .
- $\hat{G}_{\mathbb{Z}} = \hat{G}$.
- If G is finitely generated, $\hat{G}_{\mathbb{Z}/p}$ is the pro-*p*-completion.
- We understand \hat{G}_R well. Usually we do not understand G_{HR} .
- General question: When $G_{HR} \cong \hat{G}_R$?
- Bousfield's conjecture: Let K be a field \mathbb{Z}/p or \mathbb{Q} and G be a finitely presented group. Then $G_{HK} \cong \hat{G}_K$.

Theorem (R.Mikhailov, -(2014))

If G is a metabelian finitely presented group and $K = \mathbb{Z}/p$ or $K = \mathbb{Q}$, then

$$G_{HK} \cong \hat{G}_K.$$

Theorem (R.Mikhailov, -(2014))

Let G be a finitely presented metabelian group. Then

$$\begin{aligned} H_2(G, \mathbb{Z}/p) &\longrightarrow H_2(\hat{G}_{\mathbb{Z}/p}, \mathbb{Z}/p), \\ H_2(G, \mathbb{Q}) &\longrightarrow H_2(\hat{G}_{\mathbb{Q}}, \mathbb{Q}), \\ H_2(G, \mathbb{Z}/p) &\longrightarrow H_2(\hat{G}, \mathbb{Z}/p). \end{aligned}$$

are epimorphisms.

- $H^2(\hat{G}_p, \mathbb{Z}/p) = H^2_{cont}(\hat{G}_p, \mathbb{Z}/p).$
- The cokernel of the map

$$H_2(G) \to H_2(\hat{G})$$

is divisible.

Homology of completions of free groups

- What do we know about homology of completions of free groups?
- Bousfield (1977): $H_2(\hat{F})$ is uncountable. There is an epimorphism

$$H_2(\hat{F}) \twoheadrightarrow \mathbb{Q}^{\oplus \mathbf{c}}.$$

- Bousfield (1992): One of two groups $H_2(\hat{F}_p, \mathbb{Z}/p)$, $H_3(\hat{F}_p, \mathbb{Z}/p)$ is uncountable.
- Questions:
- $H_2(\hat{F}) \stackrel{?}{\cong} \mathbb{Q}^{\oplus \mathbf{c}}$
- Weaker question $H_2(\hat{F}, \mathbb{Z}/p) \stackrel{?}{=} 0$
- $H_3(\hat{F}) \stackrel{?}{=} 0$
- $H_2(\hat{F}_p, \mathbb{Z}/p), H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q}) = ?$