Higher limits. fr-codes

Sergei O. Ivanov

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

• I want to present a connection

(homological algebra) \leftrightarrow (combinatorial group theory)

- Groups here can be replaced by any algebraic object. Historically associative algebras were the first.
- Hopf's formula: if G = F/R, where F is a free group,

$$H_2(G) = \frac{R \cap [F, F]}{[R, F]} = \lim \frac{R}{[R, F]}.$$

- $\frac{R \cap [F,F]}{[R,F]}$ is the largest part of $\frac{R}{[R,F]}$ which is independent of the choice of F and R.
- The aim is to explain the formula with lim and show how to generalise it.

- Limit $\lim \mathcal{F}$ of a functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ is an object of \mathcal{D} together with a universal collection of morphisms $\{\varphi_c: \lim \mathcal{F} \to \mathcal{F}(c)\}_{c \in \mathcal{C}}$ such that $\mathcal{F}(f)\varphi_c = \varphi_{c'}$ for every morphism $f: c \to c'$.
- Universality means that for every object $d \in \mathcal{D}$ and every collection of morphisms $\{\psi_c : d \to \mathcal{F}(c)\}_{c \in \mathcal{C}}$ such that $\mathcal{F}(f)\psi_c = \psi_{c'}$ for every morphism $f : c \to c'$ there exists a unique morphism $\alpha : d \to \lim \mathcal{F}$ such that $\psi_c = \varphi_c \alpha$.
- If a limit exists, it is unique up to a unique isomorphism.

Limits over strongly connected categories

- Let k be a commutative ring and C be a category.
- \mathcal{C} is strongly connected if $\mathcal{C}(c,c') \neq \emptyset$ for any $c,c' \in \mathcal{C}$.

Proposition

Let \mathcal{C} be a strongly connected category and $\mathcal{F}: \mathcal{C} \to \mathsf{Mod}(k)$ be a functor. Then $\lim \mathcal{F}$ exists, for any $c \in \mathcal{C}$ the morphism

 $\varphi_c : \lim \mathcal{F} \rightarrowtail \mathcal{F}(c)$

is a monomorphism and $\lim \mathcal{F}$ is the largest constant subfunctor of \mathcal{F} .

• Roughly speaking, in this case $\lim \mathcal{F}$ consists of elements of $\mathcal{F}(c)$ that are independent of c.

- Let k be a commutative ring and \mathcal{C} be a category.
- All limits of all functors C → Mod(k) exist. (If we consider big enough universe)
- We get the functor

 $\lim : \operatorname{Funct}(\mathcal{C}, \operatorname{Mod}(k)) \to \operatorname{Mod}(k),$

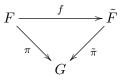
$$\mathcal{F} \mapsto \lim \mathcal{F}.$$

- lim : Funct(C, Mod(k)) → Mod(k) is a left exact functor between abelian categories.
- **Higher limits** of $\mathcal{F} : \mathcal{C} \to \mathsf{Mod}(k)$ are defined as follows:

$$\lim^{i} \mathcal{F} \coloneqq \mathbf{R}^{i} \lim \mathcal{F}.$$

The category of presentations of a group

- Let G be a group.
- A **presentation** of G is an epimorphism from a free group $\pi: F \twoheadrightarrow G$.
- If $R = \text{Ker}(\pi)$, then $G \cong F/R$.
- A morphism of presentations $f : (\pi : F \twoheadrightarrow G) \to (\tilde{\pi} : \tilde{F} \twoheadrightarrow G)$ is a homomorphism $f : F \to \tilde{F}$ such that $\tilde{\pi}f = \pi$.



- Pres(G) is the category of presentations of G.
- Pres(G) is strongly connected.
- If A is an **associative algebra** over a field k, the category Pres(A) is defined similarly.
- Further all limits are taken over the category of presentations.

The origin of the approach: Quillen's theorem about cyclic homology

- Let A be an algebra over a field k. If $F \twoheadrightarrow A$ is a presentation of A, we set $\mathbf{r} := \text{Ker}(F \twoheadrightarrow A)$.
- For an F-bimodule M we set

$$M_{\natural} = \frac{M}{[M,F]} = HH_0(F,M),$$

where [M, F] is the vector space generated by elements mf - fm.

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then even cyclic homology are isomorphic to the limits

 $HC_{2n}(A) \cong \lim (F/\mathbf{r}^{n+1})_{\natural}.$

- How to present odd cyclic homology on this language?
- Our answer: use higher limits.

Sergei O. Ivanov

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are isomorphisms

$$HC_{2n}(A) \cong \lim^0 (F/\mathbf{r}^{n+1})_{\natural}.$$

Theorem (R. Mikhailov, -(2013))

Let A be an **augmented** algebra over a field k of characteristic 0. Then there are isomorphisms

$$HC_{2n-1}(A) \cong \lim^{1} (F/\mathbf{r}^{n+1})_{\natural}.$$

• \lim^{1} allows to present odd cyclic homology but only for augmented algebras.

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are isomorphisms

$$HC_{2n}(A) \cong \lim^0 (F/\mathbf{r}^{n+1})_{\natural}.$$

Theorem (R. Mikhailov, -(2013))

Let A be an algebra over a field k (of any characteristic), M be a A-bimodule, $n \ge 1$, $0 \le i \le n-1$. Then there are natural isomorphisms

$$HH_{2n-i}(A) \simeq \lim^{i} (\mathbf{r}^{n}/\mathbf{r}^{n+1})_{\natural}$$
$$HH_{2n-i}(A,M) \simeq \lim^{i} (\mathbf{r}^{n}/\mathbf{r}^{n+1}) \otimes_{A^{e}} M$$

• Higher limits allow to present odd Hochschild homology.

Consider the short exact sequence

$$0 \longrightarrow \mathbf{r}^n / \mathbf{r}^{n+1} \longrightarrow F / \mathbf{r}^{n+1} \longrightarrow F / \mathbf{r}^n \longrightarrow 0.$$

Conjecture: This short exact sequence after applying $\lim^{*} (-)_{\natural}$ induces the Connes-Tzygan exact sequence:

$$\dots \longrightarrow HH_{2n}(A) \longrightarrow HC_{2n}(A) \longrightarrow HC_{2n-2}(A) \longrightarrow HH_{2n-1}(A) \longrightarrow \dots$$

- Let G be a group.
- If $F \twoheadrightarrow G$ is a presentation, we set $R \coloneqq \operatorname{Ker}(F \twoheadrightarrow G)$.
- R_{ab} is so-called relation module over G (functorial by Pres(G)).

Theorem (R. Mikhailov, -(2013))

For a group G and a G-module M there are isomorphisms:

$$H_{2n-i}(G) = \lim^{i} (R_{ab}^{\otimes n})_G,$$

 $H_{2n-i}(G,M) = \lim^{i} R_{ab}^{\otimes n} \otimes_{\mathbb{Z}G} M, \qquad 0 \le i \le n-1.$

- $H_{2n-i}(G) = \lim^{i} (R_{ab}^{\otimes n})_G$
- $n \coloneqq 1, i \coloneqq 0.$
- $(R_{ab})_G = \frac{R}{[F,R]}$
- $H_2(G) = \lim \frac{R}{[F,R]}$
- $H_2(G) = \frac{R \cap [F,F]}{[F,R]}$ (Hopf's formula).
- $H_2(G) = \frac{R \cap [F,F]}{[F,R]}$ is the biggest subgroup of $\frac{R}{[F,R]}$ which is 'independent' under the choice of $F \twoheadrightarrow G$.
- All this theory can be considered as a generalisation of the Hopf's formula.

$\mathbf{fr}\text{-codes of functors }\mathsf{Gr}\to\mathsf{Ab}$

• Pres is the category whose objects are presentations of a group $F \xrightarrow{\pi} G$, and whose morphisms are commutative squares

- The fibre of the forgetful functor $\mathsf{Pres} \to \mathsf{Gr}$ over a group G is the category $\mathsf{Pres}(G)$.
- $\mathbb{Z}F$ can be considered as a functor $\mathbb{Z}F$: $\mathsf{Pres} \to \mathsf{Ab}$.
- A functorial ideal is a subfunctor $\mathbf{x} \triangleleft \mathbb{Z}F : \mathsf{Pres} \to \mathsf{Ab}$ consisting of ideals.
- **Example.** The augmentation ideal $\mathbf{f} \triangleleft \mathbb{Z}F$ is a functorial ideal.
- Example. The ideal $\mathbf{r} = \operatorname{Ker}(\mathbb{Z}F \twoheadrightarrow \mathbb{Z}G)$ is a functorial ideal.
- Example. All combinations like $\mathbf{f}^{2}\mathbf{r} + \mathbf{r}^{2}\mathbf{f} + (\mathbf{rfrf} \cap \mathbf{f}^{6}) + \mathbf{r}^{10}$ are functorial ideals (we can use $\cdot, +, \cap$).

 $\bullet\,$ For a functorial ideal ${\bf x}$ we can consider higher limits

$${}^{i}[\mathbf{x}] = \lim_{\mathsf{Pres}(G)} {}^{i}\mathbf{x} : \mathsf{Gr} \to \mathsf{Ab}.$$

$$G \mapsto \lim_{\operatorname{Pres}(G)}^{i} \mathbf{x}.$$

If x ⊆ f, then ⁰[x] = 0. Hence, the first interesting case is ¹[x].
We set

$$[\mathbf{x}] \coloneqq {}^{1}[\mathbf{x}].$$

Examples:

Let $I:\mathsf{Gr}\to\mathsf{Ab}$ be the functor that sends G to the augmentation ideal. Then

$$I(G) = [\mathbf{r}] = \lim^{1} \mathbf{r}.$$

More examples:

$$\begin{aligned} G_{ab} &= [\mathbf{r} + \mathbf{f}^2], \\ I \otimes_{\mathbb{Z}G} I &= [\mathbf{fr} + \mathbf{rf}], \\ I^{\otimes_{\mathbb{Z}G}3} &= [\mathbf{f}^2\mathbf{r} + \mathbf{frf} + \mathbf{rf}^2], \\ I^2 \otimes_{\mathbb{Z}G} I &= [\mathbf{f}^2\mathbf{r} + \mathbf{rf}], \\ H_4(G) &= [\mathbf{fr}^2 + \mathbf{r}^2\mathbf{f}], \\ H_6(G) &= [\mathbf{fr}^3 + \mathbf{r}^3\mathbf{f}], \\ \mathsf{Tor}(G_{ab}, G_{ab}) &= [\mathbf{r}^2 + \mathbf{f}^3], \end{aligned}$$

$$\begin{split} I/I^3 &= [\mathbf{r} + \mathbf{f}^3],\\ G_{ab} \otimes G_{ab} &= [\mathbf{fr} + \mathbf{rf} + \mathbf{f}^3],\\ (I/I^3)^{\otimes_{\mathbb{Z}G} 2} &= [\mathbf{fr} + \mathbf{rf} + \mathbf{f}^4],\\ (I^2/I^4) \otimes_{\mathbb{Z}G} I &= [\mathbf{f}^2 \mathbf{r} + \mathbf{rf} + \mathbf{f}^5],\\ H_3(G) &= [\mathbf{r}^2 + \mathbf{frf}]\\ H_5(G) &= [\mathbf{r}^3 + \mathbf{fr}^2 \mathbf{f}]\\ L_2 \otimes^3 G_{ab} &= [\mathbf{r}^3 + \mathbf{f}^4], \end{split}$$

$\mathbf{fr}\text{-codes of functors }\mathsf{Gr}\to\mathsf{Ab}$

- The class of functors that can be obtained as [**x**], where **x** is a 'polynomial' of **f**, **r**, is called **fr-universe**.
- **x** is called an **fr-code** of the functor.
- The class of functors that can be obtained as ^{*i*}[**x**], where **x** is a 'polynomial' of **f**, **r**, is called **higher fr-universe**.
- There are a lot of functors in the **fr**-universe:

$$H_{2n+2}(G) = [\mathbf{fr}^{n+1} + \mathbf{r}^{n+1}\mathbf{f}], \quad H_{2n-1}(G) = [\mathbf{r}^n + \mathbf{fr}^{n-1}\mathbf{f}] \quad n \ge 1.$$

$$I^{l} \otimes_{\mathbb{Z}G} I^{\otimes_{\mathbb{Z}G}n} = \left[\mathbf{rf}^{n-1} + \sum_{i=1}^{n-1} \mathbf{f}^{l+i} \mathbf{rf}^{n-i-1}\right] \quad \text{for } n, l \ge 1.$$

$$(I^l/I^k) \otimes_{\mathbb{Z}G} I^{\otimes_{\mathbb{Z}G}n} = \left[\mathbf{r}\mathbf{f}^{n-1} + \sum_{i=1}^{n-1} \mathbf{f}^{l+i}\mathbf{r}\mathbf{f}^{n-i-1} + \mathbf{f}^{k+1}\right] \quad \text{for } n, l \ge 1, k > l.$$

$$G_{ab}^{\otimes n} = \left[\sum_{i=1}^{n} \mathbf{f}^{i-1} \mathbf{r} \mathbf{f}^{n-i} + \mathbf{f}^{n+1}\right] \quad \text{for } n \ge 1.$$

Sergei O. Ivanov

Higher limits. fr-codes

- Question: is there an fr-code for $H_2(G)$?
- Question: is there an **fr**-code for $L_i \otimes^n G_{ab}$ for $1 \le i \le n-2$?
- There is a higher **fr**-code:

$$L_{n-i}\bigotimes^n G_{ab} \cong {}^i[\mathbf{r}^n + \mathbf{f}^{n+1}].$$

fr-code	lim ¹	lim ²	lim ³	lim ⁴
f	0	0	0	0
r	I	0	0	0
rr	0	$I \otimes I$	0	0
rrr	0	0	$I \otimes I \otimes I$	0
rrrr	0	0	0	$I \otimes I \otimes I \otimes I$
fr+rf	$I \otimes_{\mathbb{Z}G} I$	0	0	0
ffr+frf+rff	$I \otimes_{\mathbb{Z}G} I \otimes_{\mathbb{Z}G} I$	0	0	0
r+ff	G_{ab} I/I^3	0	0	0
r+fff	I/I ³	0	0	0
rf+ffr	$I^2 \otimes_{\mathbb{Z}G} I$	0	0	0
rf+fffr	$I^3 \otimes_{\mathbb{Z}G} I$	0	0	0
rfr+frr+ffff	$\operatorname{Tor}(G_{ab} \otimes G_{ab}, G_{ab})$	0	0	0
fr+rf+fff	$G_{ab} \otimes G_{ab}$	0	0	0
rff+frf+rff+ffff	$G_{ab} \otimes G_{ab} \otimes G_{ab}$	0	0	0
rr+fff	$Tor(G_{ab}, G_{ab})$	$G_{ab} \otimes G_{ab}$	0	0
rrr+ffff	$L_2 \otimes^3 (G_{ab})$	$L_1 \otimes^3 (G_{ab})$	$G_{ab}\otimes G_{ab}\otimes G_{ab}$	0
rrrr+fffff	$L_3 \otimes^4 (G_{ab})$	$L_2 \otimes^4 (G_{ab})$	$L_1 \otimes^4 (G_{ab})$	$G_{ab}^{\otimes 4}$ 0
rr+frf	$H_3(G)$	$I \otimes_{\mathbb{Z}G} I$	0	
rrf+frr	$H_4(G)$	$H_3(G)$	$I \otimes_{\mathbb{Z}G} I$	0
rrr+frrf	$H_5(G)$	$H_4(G)$	$H_3(G)$	$I \otimes_{\mathbb{Z}G} I$
rrrf+frrr	$H_6(G)$	$H_5(G)$	$H_4(G)$	$H_3(G)$
rf+ffr+ffff	$I^2/I^3 \otimes G_{ab}$	0	0	0
rfff+rfr+rrf	0	$I\otimes G_{ab}\otimes G_{ab}$	0	0
rrfff+rrfr+rrrf	0	0	$I\otimes I\otimes G_{ab}\otimes G_{ab}$	0

Technique. Monoadditive representations

- Let \mathcal{C}, \mathcal{D} be categories with pairwise coproducts and $\mathcal{F} : \mathcal{C} \to \mathcal{D}$.
- The morphisms $c_1 \xrightarrow{i_1} c_1 \sqcup c_2 \xleftarrow{i_2} c_2$ induce the morphism $\mathcal{F}(c_1) \sqcup \mathcal{F}(c_2) \longrightarrow \mathcal{F}(c_1 \sqcup c_2).$
- **Def.** \mathcal{F} is additive (resp. monoadditive, split monoadditive) if this morphism is an isomorphism (resp. monomorphism, split monomorphism in the category of bifunctors).
 - The functors $sq : \mathcal{C} \to \mathcal{C}$ and $sq : \mathcal{D} \to \mathcal{D}$ given by $sq(x) = x \sqcup x$.
 - Then we have $T_{\mathcal{F}} : sq \circ \mathcal{F} \longrightarrow \mathcal{F} \circ sq$.
 - A representation of \mathcal{C} is a functor $\mathcal{C} \to \mathsf{Mod}(k)$.
 - Let $\mathcal{F} : \mathcal{C} \to \mathsf{Mod}(k)$ be a monoadditive representation. Set $\Sigma \mathcal{F} := \operatorname{coker}(\mathsf{T}_{\mathcal{F}}).$

$$0 \longrightarrow \mathcal{F} \oplus \mathcal{F} \xrightarrow{\mathsf{T}_{\mathcal{F}}} \mathcal{F} \circ \mathsf{sq} \longrightarrow \Sigma \mathcal{F} \longrightarrow 0$$

Def. A monoadditive representation \mathcal{F} is said to be *n*-monoadditive, if $\Sigma \mathcal{F}$ is (n-1)-monoadditive.

Proposition

Let \mathcal{F} be a monoadditive representation of \mathcal{C} . Then for any $n \ge 0$ there is an isomorphism:

 $\lim^{n} \mathcal{F} \cong \lim^{n-1} \Sigma \mathcal{F}.$

Corollary

If \mathcal{F} is an n-monoadditive representation, then $\lim^{i} \mathcal{F} = 0$ for $0 \leq i < n$ and $\lim^{i} \mathcal{F} = \lim^{i-n} \Sigma^{n} \mathcal{F}$.

Corollary

If \mathcal{F} is an ∞ -monoadditive representation, then $\lim^{i} \mathcal{F} = 0$ for any $i \geq 0$.

Proposition

If \mathcal{F} is a split monoadditive representation, then $\Sigma \mathcal{F}$ is a split monoadditive representation.

Corollary

A split monoadditive representation is ∞ -monoadditive.

split monoadditive $\Rightarrow \infty$ -monoadditive \Rightarrow monoadditive

$$\lim^{*} = 0 \qquad \qquad \lim^{*} = 0 \qquad \qquad \lim^{0} = 0$$
$$\lim^{i} \mathcal{F} = \lim^{i-1} \Sigma \mathcal{F}$$

Example of a proof

- \bullet We can prove that ${\bf f}$ is split monoadditive.
- Hence $\lim^{i} \mathbf{f} = 0$ for all *i*.
- Consider the short exact sequence

$$0 \longrightarrow \mathbf{r} \longrightarrow \mathbf{f} \longrightarrow I \longrightarrow 0$$

• Consider the corresponding long exact sequence of higher limits

$$0 \to \lim^{0} \mathbf{r} \to \lim^{0} \mathbf{f} \to \lim^{0} I \to \lim^{1} \mathbf{r} \to \lim^{1} \mathbf{f} \to \lim^{1} I \to \dots$$

- I is a constant functor. It follows that $\lim^{i} I = 0$ for i > 0 and $\lim^{0} I = I$.
- Hence $\lim^{1} \mathbf{r} = I$ and $\lim^{i} \mathbf{r} = 0$ for $i \neq 1$.

$$I = [r].$$