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Aim

I want to present a connection

(homological algebra) ←→ (combinatorial group theory)

Groups here can be replaced by any algebraic object. Historically
associative algebras were the first.

Hopf’s formula: if G = F /R, where F is a free group,

H2(G) = R ∩ [F,F ]
[R,F ] = lim

R

[R,F ] .

R∩[F,F ]
[R,F ] is the largest part of R

[R,F ] which is independent of the
choice of F and R.

The aim is to explain the formula with lim and show how to
generalise it.
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Limits.

Limit limF of a functor F ∶ C → D is an object of D together with
a universal collection of morphisms {ϕc ∶ limF → F(c)}c∈C such
that F(f)ϕc = ϕc′ for every morphism f ∶ c→ c′.

Universality means that for every object d ∈ D and every collection
of morphisms {ψc ∶ d→ F(c)}c∈C such that F(f)ψc = ψc′ for every
morphism f ∶ c→ c′ there exists a unique morphism α ∶ d→ limF
such that ψc = ϕcα.
If a limit exists, it is unique up to a unique isomorphism.
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Limits over strongly connected categories

Let k be a commutative ring and C be a category.

C is strongly connected if C(c, c′) ≠ ∅ for any c, c′ ∈ C.

Proposition

Let C be a strongly connected category and F ∶ C →Mod(k) be a
functor. Then limF exists, for any c ∈ C the morphism

ϕc ∶ limF ↣ F(c)

is a monomorphism and limF is the largest constant subfunctor of F .

Roughly speaking, in this case lim F consists of elements of F(c)
that are independent of c.
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Higher limits

Let k be a commutative ring and C be a category.

All limits of all functors C →Mod(k) exist.
(If we consider big enough universe)

We get the functor

lim ∶ Funct(C,Mod(k))→Mod(k),

F ↦ lim F .
lim ∶ Funct(C,Mod(k))→Mod(k) is a left exact functor between
abelian categories.

Higher limits of F ∶ C →Mod(k) are defined as follows:

limi F ∶=Ri limF .
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The category of presentations of a group

Let G be a group.

A presentation of G is an epimorphism from a free group
π ∶ F ↠ G.

If R = Ker(π), then G ≅ F /R.
A morphism of presentations f ∶ (π ∶ F ↠ G)→ (π̃ ∶ F̃ ↠ G) is a
homomorphism f ∶ F → F̃ such that π̃f = π.

F
f //

π
��

F̃

π̃��
G

Pres(G) is the category of presentations of G.

Pres(G) is strongly connected.

If A is an associative algebra over a field k, the category
Pres(A) is defined similarly.

Further all limits are taken over the category of presentations.
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The origin of the approach: Quillen’s theorem about
cyclic homology

Let A be an algebra over a field k. If F ↠ A is a presentation of
A, we set r ∶= Ker(F ↠ A).
For an F -bimodule M we set

M♮ =
M

[M,F ] =HH0(F,M),

where [M,F ] is the vector space generated by elements mf − fm.

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then even cyclic
homology are isomorphic to the limits

HC2n(A) ≅ lim (F /rn+1)♮.

How to present odd cyclic homology on this language?
Our answer: use higher limits.
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Odd cyclic homology as lim1

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are
isomorphisms

HC2n(A) ≅ lim0 (F /rn+1)♮.

Theorem (R. Mikhailov, – (2013))

Let A be an augmented algebra over a field k of characteristic 0.
Then there are isomorphisms

HC2n−1(A) ≅ lim1 (F /rn+1)♮.

lim1 allows to present odd cyclic homology but only for augmented
algebras.
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Hochschild homology

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are
isomorphisms

HC2n(A) ≅ lim0 (F /rn+1)♮.

Theorem (R. Mikhailov, – (2013))

Let A be an algebra over a field k (of any characteristic), M be a
A-bimodule, n ≥ 1, 0 ≤ i ≤ n − 1. Then there are natural isomorphisms

HH2n−i(A) ≃ limi(rn/rn+1)♮
HH2n−i(A,M) ≃ limi (rn/rn+1)⊗Ae M

Higher limits allow to present odd Hochschild homology.
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Connes-Tzygan exact sequence

Consider the short exact sequence

0Ð→ rn/rn+1 Ð→ F /rn+1 Ð→ F /rn Ð→ 0.

Conjecture: This short exact sequence after applying lim∗ (−)♮
induces the Connes-Tzygan exact sequence:

. . .Ð→HH2n(A)Ð→HC2n(A)Ð→HC2n−2(A)Ð→HH2n−1(A)Ð→ . . .
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Group homology

Let G be a group.

If F ↠ G is a presentation, we set R ∶= Ker(F ↠ G).
Rab is so-called relation module over G (functorial by Pres(G)).

Theorem (R. Mikhailov, – (2013))

For a group G and a G-module M there are isomorphisms:

H2n−i(G) = limi(R⊗n
ab )G,

H2n−i(G,M) = limi R⊗n
ab ⊗ZGM, 0 ≤ i ≤ n − 1.
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Hopf’s formula

H2n−i(G) = limi(R⊗n
ab )G

n ∶= 1, i ∶= 0.

(Rab)G = R
[F,R]

H2(G) = lim R
[F,R]

H2(G) = R∩[F,F ]
[F,R] (Hopf’s formula).

H2(G) = R∩[F,F ]
[F,R] is the biggest subgroup of R

[F,R] which is
’independent’ under the choice of F ↠ G.

All this theory can be considered as a generalisation of the Hopf’s
formula.
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fr-codes of functors Gr → Ab

Pres is the category whose objects are presentations of a group
F

π↠ G, and whose morphisms are commutative squares
F1

//

π1��

F2
π2��

G1
// G2.

The fibre of the forgetful functor Pres→ Gr over a group G is the
category Pres(G).
ZF can be considered as a functor ZF ∶ Pres→ Ab.

A functorial ideal is a subfunctor x◁ZF ∶ Pres→ Ab consisting of
ideals.

Example. The augmentation ideal f ◁ZF is a functorial ideal.

Example. The ideal r = Ker(ZF ↠ ZG) is a functorial ideal.

Example. All combinations like f2r + r2f + (rfrf ∩ f6) + r10 are
functorial ideals (we can use ⋅,+,∩ ).
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fr-codes of functors Gr → Ab

For a functorial ideal x we can consider higher limits

i[x] = limi

Pres(G)
x ∶ Gr → Ab.

G↦ limi

Pres(G)
x.

If x ⊆ f , then 0[x] = 0. Hence, the first interesting case is 1[x].
We set

[x] ∶= 1[x].
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fr-codes of functors Gr → Ab

Examples:
Let I ∶ Gr → Ab be the functor that sends G to the augmentation ideal.
Then

I(G) = [r] = lim1r.

More examples:

Gab = [r + f2], I/I3 = [r + f3],
I ⊗ZG I = [fr + rf], Gab ⊗Gab = [fr + rf + f3],
I⊗ZG3 = [f2r + frf + rf2], (I/I3)⊗ZG2 = [fr + rf + f4],
I2 ⊗ZG I = [f2r + rf], (I2/I4)⊗ZG I = [f2r + rf + f5],
H4(G) = [fr2 + r2f], H3(G) = [r2 + frf]
H6(G) = [fr3 + r3f], H5(G) = [r3 + fr2f]
Tor(Gab,Gab) = [r2 + f3], L2⊗3Gab = [r3 + f4],
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fr-codes of functors Gr → Ab

The class of functors that can be obtained as [x], where x is a
’polynomial’ of f , r, is called fr-universe.
x is called an fr-code of the functor.
The class of functors that can be obtained as i[x], where x is a
’polynomial’ of f , r, is called higher fr-universe.
There are a lot of functors in the fr-universe:

H2n+2(G) = [frn+1 + rn+1f], H2n−1(G) = [rn + frn−1f] n ≥ 1.

I l ⊗ZG I
⊗ZGn = [rfn−1 +

n−1
∑
i=1

f l+irfn−i−1] for n, l ≥ 1.

(I l/Ik)⊗ZG I
⊗ZGn = [rfn−1+

n−1
∑
i=1

f l+irfn−i−1+fk+1] for n, l ≥ 1, k > l.

G⊗n
ab = [

n

∑
i=1

f i−1rfn−i + fn+1] for n ≥ 1.
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fr-codes of functors Gr → Ab

Question: is there an fr-code for H2(G)?
Question: is there an fr-code for Li⊗nGab for 1 ≤ i ≤ n − 2?

There is a higher fr-code:

Ln−i⊗n
Gab ≅ i[rn + fn+1].
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fr-code lim1 lim2 lim3 lim4

f 0 0 0 0
r I 0 0 0

rr 0 I ⊗ I 0 0
rrr 0 0 I ⊗ I ⊗ I 0

rrrr 0 0 0 I ⊗ I ⊗ I ⊗ I
fr+rf I ⊗ZG I 0 0 0

ffr+frf+rff I ⊗ZG I ⊗ZG I 0 0 0
r+ff Gab 0 0 0

r+fff I/I3 0 0 0

rf+ffr I2 ⊗ZG I 0 0 0

rf+fffr I3 ⊗ZG I 0 0 0
rfr+frr+ffff Tor(Gab ⊗Gab,Gab) 0 0 0

fr+rf+fff Gab ⊗Gab 0 0 0
rff+frf+rff+ffff Gab ⊗Gab ⊗Gab 0 0 0

rr+fff Tor(Gab,Gab) Gab ⊗Gab 0 0

rrr+ffff L2 ⊗3 (Gab) L1 ⊗3 (Gab) Gab ⊗Gab ⊗Gab 0

rrrr+fffff L3 ⊗4 (Gab) L2 ⊗4 (Gab) L1 ⊗4 (Gab) G⊗4
ab

rr+frf H3(G) I ⊗ZG I 0 0
rrf+frr H4(G) H3(G) I ⊗ZG I 0

rrr+frrf H5(G) H4(G) H3(G) I ⊗ZG I
rrrf+frrr H6(G) H5(G) H4(G) H3(G)

rf+ffr+ffff I2/I3 ⊗Gab 0 0 0
rfff+rfr+rrf 0 I ⊗Gab ⊗Gab 0 0

rrfff+rrfr+rrrf 0 0 I ⊗ I ⊗Gab ⊗Gab 0
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Technique. Monoadditive representations

Let C,D be categories with pairwise coproducts and F ∶ C → D.

The morphisms c1
i1→ c1 ⊔ c2

i2← c2 induce the morphism
F(c1) ⊔F(c2)Ð→ F(c1 ⊔ c2).

Def. F is additive (resp. monoadditive, split monoadditive) if
this morphism is an isomorphism (resp. monomorphism, split
monomorphism in the category of bifunctors).

The functors sq ∶ C → C and sq ∶ D → D given by sq(x) = x ⊔ x.
Then we have TF ∶ sq ○F Ð→ F ○ sq.
A representation of C is a functor C →Mod(k).
Let F ∶ C →Mod(k) be a monoadditive representation. Set
ΣF ∶= coker(TF).

0Ð→ F ⊕F TFÐ→ F ○ sqÐ→ ΣF Ð→ 0

Def. A monoadditive representation F is said to be n-monoadditive,
if ΣF is (n − 1)-monoadditive.
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Technique. Monoadditive representations

Proposition

Let F be a monoadditive representation of C. Then for any n ≥ 0 there
is an isomorphism:

limn F ≅ limn−1 ΣF .

Corollary

If F is an n-monoadditive representation, then limi F = 0 for 0 ≤ i < n
and limi F = limi−nΣnF .

Corollary

If F is an ∞-monoadditive representation, then limiF = 0 for any i ≥ 0.
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Technique. Monoadditive representations

Proposition

If F is a split monoadditive representation, then ΣF is a split
monoadditive representation.

Corollary

A split monoadditive representation is ∞-monoadditive.
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Technique. Monoadditive representations

split monoadditive ⇒∞-monoadditive ⇒ monoadditive

lim∗ = 0 lim∗ = 0 lim0 = 0

limi F = limi−1 ΣF
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Example of a proof

We can prove that f is split monoadditive.

Hence limif = 0 for all i.

Consider the short exact sequence

0Ð→ rÐ→ f Ð→ I Ð→ 0

Consider the corresponding long exact sequence of higher limits

0→ lim0r→ lim0f → lim0I → lim1r→ lim1f → lim1I → . . .

I is a constant functor. It follows that limiI = 0 for i > 0 and
lim0I = I.
Hence lim1r = I and limir = 0 for i ≠ 1.

I = [r].
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