Russia, 199178, St. Petersburg, 14 line V.O., 29B
+7 (812) 363-62-32
ru en

Edward A. Hirsch
Edward A. Hirsch
Professor
Contacts:

27 Fontanka (PDMI RAS), 191023 Saint Petersburg, Russia

e.girsh@spbu.ru

https://logic.pdmi.ras.ru/~hirsch/

Reception hours:

By appointment


Scientific interests

Computational complexity, propositional proof complexity.


Selected publications

  1. Y. Alekseev, D. Grigoriev, E.A. Hirsch, I. Tzameret (2020). Semi-Algebraic Proofs, IPS Lower Bounds and the \tau-Conjecture: Can a Natural Number be Negative? In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC-2020), pp. 54–67.
  2. M.G. Find, A. Golovnev, E.A. Hirsch and A.S. Kulikov (2016). A better-than-3n lower bound for the circuit complexity of an explicit function. In: Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pp. 89–98.
  3. E.A. Hirsch, D. Itsykson, I. Monakhov and A. Smal (2012). On optimal heuristic randomized semidecision procedures, with applications to proof complexity and cryptography. Theory of Computing Systems 51(2), 179–195.
  4. E. Dantsin and E.A. Hirsch (2009). Worst-case upper bounds. In: A. Biere et al. (eds.), Handbook of Satisfiability, pp. 403–424.
  5. M. Alekhnovich, E.A. Hirsch and D. Itsykson (2005). Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning 35(1–3), 51–72.
  6. D. Grigoriev, E.A. Hirsch and D.V. Pasechnik (2002). Complexity of semialgebraic proofs. Moscow Mathematical Journal 2(4), 647–679.
  7. E.A. Hirsch (2000). New worst-case upper bounds for SAT. Journal of Automated Reasoning 24(4), 397–420.

Additional Information

For more information please visit my web-page.


Teaching

Course name
Year
Semester
Role